

VISUAL BASIC SAMPLE CODE
Edition 2

By

Dr.Liew

2

Disclaimer

Visual Basic Sample Code Edition 2 is an independent publication and is

not affiliated with, nor has it been authorized, sponsored, or otherwise

approved by Microsoft Corporation.

Trademarks

Microsoft, Visual Basic, Excel, Access and Windows are either registered

trademarks or trademarks of Microsoft Corporation in the United States

and/or other countries. All other trademarks belong to their respective

owners.

Liability

The purpose of this book is to provide a basic guide for people interested in

Visual Basic programming. Although every effort and care has been taken to

make the information as accurate as possible, the author shall not be liable

for any error, harm or damage arising from using the instructions given in

this book.

Copyright © 2013 Liew Voon Kiong

All rights reserved. No Part of this e-book may be reproduced, in any form

or by any means, without permission in writing from the author.

About the Author

Dr. Liew Voon Kiong holds a bachelor's degree in Mathematics, a master's

degree in management and a doctoral degree in business administration. He

has been involved in programming for more than 15 years. He created the

popular online Visual Basic Tutorial at www.vbtutor.net in 1996 and since

then the web site has attracted millions of visitors and it is one of the top

searched Visual Basic Tutorial websites in many search engines including

Google. To provide more support for the Visual Basic hobbyists, he has

written this book based on the online Visual Basic tutorial.

http://www.vbtutor.net/

3

Preface

The sample programs in this book were developed using Visual Basic 6.

However, they can be easily modified to build applications for VB.Net.

Visual Basic 6 is a third-generation event-driven programming language first

released by Microsoft in 1991. In Visual Basic 6, the sky's the limit. You can

develop all kinds of applications, including educational apps, financial apps,

games, multimedia apps, animations, database applications and more.

Visual Basic 6 Samples Code comprises 290 pages of captivating content

and 48 fascinating sample codes. All the examples are explained in great

details using easy-to-understand language and illustrated with gorgeous

Images.

By reading the book and using the sample source codes, you will master

Visual Basic programming effortlessly!

You will be able to:

· Understand basic to intermediate concepts of Visual Basic programming.

· Create your own Visual Basic 6 programs from scratch.

· Get programming ideas from 48 interesting sample programs.

· Modify the source codes easily to suit your needs.

4

Table of Contents
Preface ..3

Table of Contents .. 4

1. Games and Fun ... 1

1.1 Simple Animated Slot Machine ...1

1.2 Advanced Animated Slot Machine ..5

1.3 Professional Casino Slot Machine .. 12

1.4 Dice ... 22

1.5 Jigsaw Puzzle .. 25

1.6 Memory Game ... 29

1.7 Passwords Cracking Program ... 33

1.8 Reversi ... 39

1.9 Snakes and Ladders Game .. 70

1.10 Star War Game ... 87

1.11 Tic Tac Toe ... 96

1.12 Time Bomb ... 106

1.13 Lucky Draw ... 109

1.14 Boggle .. 111

2. Educational Programs .. 113

2.1 Kid's Math .. 113

2.2 Pythagorean Theorem .. 125

2.3 Factors Finder .. 127

2.4 Prime Number Tester .. 129

5

2.5 Geometric Progression ... 131

2.6 Maximum Number Calculator ... 133

2.7 Quadratic Equation Solver .. 135

2.8 Quadratic Graph Plotter ... 138

2.9 Simultaneous Equations Solvers ... 140

2.10. The Sine Rule ... 144

2.11 Projectile .. 147

2.12 Simple Harmonic Motion .. 149

3. Financial Programs .. 151

3.1 Amortization Calculator .. 151

3.2 Depreciation Calculator .. 154

3.3 Future Value Calculator .. 156

3.5 Payback Period Calculator .. 161

4. Graphics Programs .. 163

4.1 Drawing Pad ... 163

5 Multimedia Programs ... 173

5.1 Creating a DVD Player ... 175

5.2 A Smart Audio Player .. 178

5.3 Multimedia Player .. 185

6 Tools and Utilities .. 191

6.1 BMI Calculator.. 191

6.2 Calculator ... 193

6.3 Digital Clock ... 203

6.4 Polling System .. 204

6

6.5 Digital Stopwatch ... 207

6.6 Choice Selection Program ... 214

7 Database Applications ... 216

7.1 Simple Database Management System 216

7.2 A Simple Database Application ... 220

7.3 A Library Management System ... 224

7.4 Inventory Management System .. 246

8. Internet Applications .. 266

8.1 Web Browser ... 266

8.2 FTP Program ... 272

Index ... 281

1

1. Games and Fun
1.1 Simple Animated Slot Machine

This simple slot machine was created using Visual Basic 6. While it

does not exactly resemble the real machines played in casinos, it

does demonstrate the concept of randomness and probability in an

actual slot machine. Slot machine is a game of chance; many

different outcomes will appear when the player presses the play

button.

In this program, you need to draw an array of nine shapes ,Visual

Basic will automatically label the shapes as shape1(0), shape1(1),

shape1(2), shape1(3), shape1(4), shape1(5), shape1(6), shape1(7)

and shape1(8) respectively. Arrange the shapes into three rows.

Write the code so that only three types of shapes appear randomly.

The shapes are square, oval and rectangle. Their appearance can be

set at runtime using the Shape properties. For example, Shape1

(0).Shape=0 means it is a rectangle, Shape1 (0).Shape=1 is a square

and Shape1 (0).Shape=2 is an oval shape. The colors of the shapes

are controlled by the FillColor property of the shapes. For example,

Shape1(0).FillColor=vbRed will give the shape a red color. Besides,

the default FillStyle property is transparent; therefore, you need to

set the FillStyle property to solid so that the colors can show up.

Randomness can be achieved by using the Rnd function. You must

also insert a timer to create the animated effect of the slot machine.

The time interval is set to 10 so that the shapes change at a fast rate

to create the illusion of animation. The program also uses a variable

x to control the timer so that it can be stopped when x attains a

specific value, otherwise the program will loop forever. The

purpose of this program is just to show how different shapes can

appear randomly, therefore many advanced features of a slot

machine such as the amount of bet are not included here.

The design UI us shown in Figure 1.1

2

The Design UI

Figure 1.1

The Runtime IUI is as shown in Figure 1.2

3

Figure 1.2

The code

Private Sub Command1_Click()

'To start the timer

Timer1.Enabled = True

x = 0

End Sub

Private Sub Timer1_Timer()

4

x = x + 10

Dim a, i As Integer

For i = 0 To 8

‘To generate random integers 0,1 and 2

a = Int(Rnd * 3)

Shape1(i).Shape = a

Shape1(i).FillStyle = Solid

If a = 0 Then

Shape1(i).FillColor = vbRed

ElseIf a = 1 Then

Shape1(i).FillColor = vbGreen

Else

Shape1(i).FillColor = vbBlue

End If

Next i

'To stop the timer

If x > 500 Then

Timer1.Enabled = False

End If

End Sub

5

1.2 Advanced Animated Slot Machine

This is a more advanced animated slot machine created using Visual

Basic 6, an improvement from the simple animated slot machine.

The slot machine allows the player to enter the amount to bet.

Besides that, we add sound and music to the program. The interface

is shown in Figure 1.3

Figure 1.3

To design the UI, drag the form to a suitable size. Insert a Label

control and place it at the top part of the part. Change its caption to

‘Animated Slot Machine’, set proper font type, font size as well as

6

foreground and background colors. Next, insert another Label

control and place it immediately below the first Label. This Label

serves as the display panel for showing the amount the user wins.

The display will be animated.

Besides that, place a shape control and set its shape property to

rounded rectangle. Drag it to a proper size and fill it with a suitable

solid color. It will act as the background panel for the spinning

shapes. Now for the spinning shapes, insert a shape control into the

form and then copy and paste repeatedly to create a control array of

three shapes, each will be identified by its index. The first is

shape1(0), the second is shape1(1) and the third shape1(2).

Retain the default shape property as rectangle and only change their

shapes during runtime. Place all the three shapes on top of the first

shape control, use color to make the former shapes stand out. In

addition, insert another Label below the shape controls above and

change its caption to 'Enter amount to bet' to give instruction to

the player the amount to bet. To let the player enters the amount

they want to bet, insert a text box on the right of the above label and

clear its text. The next two controls you need to insert into the form

are two command buttons, one of them you label its caption as

“Spin” and the other one you label it as “Stop”.

To create the animated effect, you must insert a timer and set its

interval to 20, which is equivalent to 0.02 second. You must also set

its Enabled property to False so that the slot machine will not start

until the user presses the “Spin” button. Besides, you need to insert

the Multimedia Control to produce the sound effects. To include the

multimedia control as one of the controls, click on project on the

menu in Visual Basic 6 IDE and select components, and then click

on Microsoft Multimedia Control 6.0 to add it to the Toolbox.

Once the Microsoft Multimedia Control icon is added to the

Toolbox, you can add the Multimedia Control into your form. In

this program, you need to use two Microsoft Multimedia Controls,

one for playing the spinning sound and the other for the jackpot

sound. You must set the Visible property of both Microsoft

7

Multimedia Controls to False so that they will not initiate at start-up.

Last, insert a menu item and label it as “Help” and a submenu item

and label it as “Instruction”.

The code

Dim x As Integer

Dim amount As Integer

Dim a, b, c As Integer

Private Sub Spin_Click()

Timer1.Enabled = True

MMControl1.Command = "Close"

MMControl2.Command = "close"

x = 0

Label2.Caption = "Your Credits"

amount = Val(Text1)

End Sub

Private Sub Stop_Click()

End

End Sub

Private Sub Form_Click()

Label3.Visible = False

End Sub

Private Sub Form_Load()

Label1.Caption = " Welcome to Play"

Label3.Visible = False

End Sub

8

‘To display instructions when the user clicks on the menu item Help

Private Sub instruct_click()

 Label3.Visible = True

End Sub

Private Sub Text1_Change()

amount = Val(Text1)

End Sub

Private Sub Timer1_Timer()

If x < 500 Then

spin

Else

Timer1.Enabled = False

MMControl1.Command = "Stop"

Label1.Alignment = 2

If (a = 3 And b = 3 And c <> 3) Or (a = 3 And c = 3 And b <> 3) Or _

 (b = 3 And c = 3 And a <> 3) Then

Label1.Caption = " You win 20 dollars"

amount = amount + 20

End If

If (a = 4 And b = 4 And c <> 4) Or (a = 4 And c = 4 And b <> 4) Or _

(b = 4 And c = 4 And a <> 4) Then

Label1.Caption = " You win 30 dollars"

amount = amount + 30

End If

If (a = 5 And b = 5 And c <> 5) Or (a = 5 And c = 5 And b <> 5) Or _

9

 (b = 5 And c = 5 And a <> 5) Then

Label1.Caption = " You win 40 dollars"

amount = amount + 40

End If

If (a = 3 And b = 3 And c = 3) Or (a = 4 And b = 4 And c = 4) Or _

 (a = 5 And b = 5 And c = 5) Then

‘To play sound

MMControl2.Notify = False

MMControl2.Wait = True

MMControl2.Shareable = False

MMControl2.DeviceType = "WaveAudio"

MMControl2.FileName = "C:\ My Documents\VB

program\audio\jackpot.wav"

MMControl2.Command = "Open"

MMControl2.Command = "Play"

Label1.Caption = “Congratulation! Jackpot!!! You win 200 dollars!"

amount = amount + 200

End If

If (a = 3 And b = 4 And c = 5) Or (a = 3 And b = 5 And c = 4) _

Or (a = 4 And b = 3 And c = 5) Or (a = 4 And b = 5 And c = 3) _

Or (a = 5 And b = 4 And c = 3) Or (a = 5 And b = 3 And c = 4) Then

Label1.Caption = “Too bad, you lost 50 dollars"

amount = amount – 50

End If

If amount < 0 Then

Label1.Caption = "Oh! You’re bankrupt!"

10

End If

Text1.Text = Str$(amount)

End If

End Sub

‘To simulate spinning of the shapes

Sub spin()

x = x + 10

Randomize Timer

a = 3 + Int(Rnd * 3)

b = 3 + Int(Rnd * 3)

c = 3 + Int(Rnd * 3)

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = "WaveAudio"

MMControl1.FileName = "C:\ My Documents\VB

program\audio\slot2.wav"

MMControl1.Command = "Open"

MMControl1.Command = "Play"

Label1.Caption = "Good Luck!"

Label1.Alignment = a - 3

Shape1(0).Shape = a

If a = 3 Then

Shape1(0).FillColor = &HFF00&

End If

If a = 4 Then

11

Shape1(0).FillColor = &HFF00FF

End If

If a = 5 Then

Shape1(0).FillColor = &HFF0000

End If

Shape1(1).Shape = b

If b = 3 Then

Shape1(1).FillColor = &HFF00&

End If

If b = 4 Then

Shape1(1).FillColor = &HFF00FF

End If

If b = 5 Then

Shape1(1).FillColor = &HFF0000

End If

Shape1(2).Shape = c

If c = 3 Then

Shape1(2).FillColor = &HFF00&

End If

If c = 4 Then

Shape1(2).FillColor = &HFF00FF

End If

If c = 5 Then

Shape1(2).FillColor = &HFF0000

End If

End Sub

12

1.3 Professional Casino Slot Machine

This a slot machine that resembles the real slot machines in the

casinos. To design the UI, insert three image boxes into the form

and write code so that they will display a set of three different

pictures randomly when the user presses on the spin button. It

involves a randomization process. Next, insert a timer and write

relevant code to produce animated effects. In addition, insert the

Microsoft Multimedia Control so that it can play sounds that

synchronize with the spinning of the slot machine as well as when

the player hits the jackpot.

Next, declare three variables a, b and c that will be randomly

assigned the values of, 2 and 3 using the Rnd function. Based on

these three random numbers, three different images will be loaded

into the three image boxes randomly using the LoadPicture method.

Animated effects are created by entering the procedure under the

control Timer1, which will call the spin procedure after every

interval until it fulfills a certain condition, as shown below:

Private Sub Timer1_Timer()

‘Call the spin procedure

spin

…….The rest of the code……

End Sub

The spin procedure

Sub spin()

a = 3 + Int(Rnd * 3)

b = 3 + Int(Rnd * 3)

c = 3 + Int(Rnd * 3)

…….The rest of the code….

End Sub

13

Sounds are added using the Microsoft Multimedia Control to make

the game more exciting and interesting. The amount won is

controlled by the If…Then statements, illustrated as follows:

If (a = 3 And b = 3 And c <> 3) Or (a = 3 And c = 3 And b <> 3) Or _

(b = 3 And c = 3 And a <> 3) Then

Label1.Caption = " You win 20 dollars"

amount = amount + 20

End If

It is important that you define the correct path for the LoadPicture

method; otherwise the program will fail to load the images. For

example, our path is C:\VB program\Images\grape.gif, you need

to create the necessary folders and have the necessary image file if

you wish to copy the program directly. If you place the image file in

a differently folder, you need to modify the path accordingly. For

example, if your image file is in D:\VB program\Images\grape.gif,

then you need to modify the LoadPicture method to LoadPicture

("D:\VB program\Images\grape.gif").

The UI is show in Figure 1.4.

14

Figure 1.4

15

The code

Dim x As Integer

Dim amount As Variant

Dim balance As Variant

Dim a, b, c As Integer

Private Sub Command1_Click()

End

End Sub

‘Code for the Bet on balance button

Private Sub betbal_Click()

Label13.Caption = Str$(Val(Label6.Caption) + Val(Label13.Caption))

Label6.Caption = ""

End Sub

‘Code for the Cash Out button

Private Sub Cashout_Click()

If Val(Label13.Caption) > 0 Then

balance = Val(Label6.Caption) + Val(Label13.Caption)

Label13.Caption = ""

Label6.Caption = Str$(balance)

Label1.Caption = "Please bet again"

Else

Label1.Caption = "Sorry, you have no money to cash out."

End If

End Sub

16

Private Sub Form_Click()

Label3.Visible = False

End Sub

Private Sub Form_Load()

Label1.Caption = " Welcome to Play"

Label3.Visible = False

Image1(0).Picture = LoadPicture("C:\My Documents\VB &_

program\Images\grape.gif")

Image1(1).Picture = LoadPicture("C:\My Documents\VB &_

program\Images\cherry.gif")

Image1(2).Picture = LoadPicture("C:\ My Documents\ VB &_

program\Images\orange.gif")

End Sub

‘To show instruction on a label control

Private Sub instruct_click()

Label3.Visible = True

End Sub

Private Sub Label12_Click()

Label13.Caption = Str$(Val(Label13.Caption) + Val(Text2.Text))

Text2.Text = ""

End Sub

‘The spin procedure

Private Sub spin_Click()

Timer1.Enabled = True

MMControl1.Command = "Close"

17

MMControl2.Command = "close"

x = 0

amount = Val(Text1)

balance = Val(Label6)

End Sub

‘Code for the Spin button

Private Sub spining_Click()

If Val(Label13.Caption) > 0 Then

Timer1.Enabled = True

MMControl1.Command = "Close"

MMControl2.Command = "close"

x = 0

amount = Val(Label13.Caption)

balance = Val(Label6)

Else

Label1.Caption = "Sorry, you have no money to spin, add cash."

End If

End Sub

‘To stop the game

Private Sub stop_Click()

End

End Sub

Private Sub Timer1_Timer()

‘Call the spin procedure

spin

18

x = x + 20

If x > 500 Then

Timer1.Enabled = False

MMControl1.Command = "Stop"

Label1.Alignment = 2

If (a = 3 And b = 3 And c <> 3) Or (a = 3 And c = 3 And b <> 3) Or _

(b = 3 And c = 3 And a <> 3) Then

Label1.Caption = " You win 20 dollars"

amount = amount + 20

End If

If (a = 4 And b = 4 And c <> 4) Or (a = 4 And c = 4 And b <> 4) Or _

(b = 4 And c = 4 And a <> 4) Then

Label1.Caption = " You win 30 dollars"

amount = amount + 30

End If

If (a = 5 And b = 5 And c <> 5) Or (a = 5 And c = 5 And b <> 5) Or _

(b = 5 And c = 5 And a <> 5) Then

Label1.Caption = " You win 40 dollars"

amount = amount + 40

End If

If (a = 3 And b = 3 And c = 3) Or (a = 4 And b = 4 And c = 4) Or_

(a = 5 And b = 5 And c = 5) Then

‘Playing sound

MMControl2.Notify = False

MMControl2.Wait = True

MMControl2.Shareable = False

19

MMControl2.DeviceType = "WaveAudio"

MMControl2.FileName = "C:\My Documents\VB _

program\audio\jackpot.wav"

MMControl2.Command = "Open"

MMControl2.Command = "Play"

Label1.Caption = " Congratulation! Jackpot!!! You win 200 dollars!"

amount = amount + 200

End If

If (a = 3 And b = 4 And c = 5) Or (a = 3 And b = 5 And c = 4) Or _

(a = 4 And b = 3 And c = 5) Or (a = 4 And b = 5 And c = 3) Or _

(a = 5 And b = 4 And c = 3) Or (a = 5 And b = 3 And c = 4) Then

Label1.Caption = " Too bad, you lost 100 dollars"

amount = amount - 100

End If

If amount < 0 Then

Label1.Caption = "Oh! you're bankrupt! Add cash to play!"

End If

Label13.Caption = Str$(amount)

End If

End Sub

‘The spin sub procedure

Sub spin()

a = 3 + Int(Rnd * 3)

b = 3 + Int(Rnd * 3)

c = 3 + Int(Rnd * 3)

20

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = "WaveAudio"

MMControl1.FileName = "C:\ My

Documents\VBprogram\audio\slot2.wav"

MMControl1.Command = "Open"

MMControl1.Command = "Play"

Label1.Caption = "Good Luck!"

Label1.Alignment = a - 3

If a = 3 Then

Image1(0).Picture = LoadPicture("C:\ My Documents\VB _

program\Images\grape.gif")

End If

If a = 4 Then

Image1(0).Picture = LoadPicture("C:\ My Documents\VBprogram\ _

Images\cherry.gif")

End If

If a = 5 Then

Image1(0).Picture = LoadPicture("C:\My Documents\VBprogram\ _

Images \orange.gif")

End If

If b = 3 Then

Image1(1).Picture = LoadPicture("C: \ My Documents\VBprogram_

Images\grape.gif")

End If

If b = 4 Then

21

Image1(1).Picture = LoadPicture("C:\ :\ My Documents\VBprogram\ _

Images \cherry.gif")

End If

If b = 5 Then

Image1(1).Picture = LoadPicture("C:\ My Documents\VBprogram_

 Images \orange.gif")

End If

If c = 3 Then

Image1(2).Picture = LoadPicture("C:\ My Documents\VBprogram_

Images grape.gif")

End If

If c = 4 Then

Image1(2).Picture = LoadPicture("C:\ My Documents\VBprogram_

 Images \cherry.gif")

End If

If c = 5 Then

Image1(2).Picture = LoadPicture("C:\ :\ My Documents\VBprogram\ _

Images \orange.gif")

End If

End Sub

22

1.4 Dice

This program creates a dice that can be used to play board games.

Indeed, it can also be incorporated into any VB game that requires a

die. Example of games that require the use of a dice is step and

ladder game, monopoly, boggle, Backgammon and more.

To design the UI, the first step is to draw a rounded square in the

project windows. Secondly, you need to draw an array of seven dots

using the shape control. VB will automatically label them as

shape1(0), shape1(1), shape1(2), shape1(3), shape1(4), shape1(5)

and shape1(6). You can control the appearance of the dots using the

random function Rnd. Each time the user clicks the ‘Roll’ button,

he or she can see different combinations of dots. The UI is as shown

in Figure 1.5

Figure 1.5

23

The Code

Private Sub Command1_Click()

n = Int(1 + Rnd * 6)

For i = 0 To 6

 Shape1(i).Visible = False

Next

If n = 1 Then

 Shape1(3).Visible = True

 Shape2.FillColor = &HC0C0C0

End If

If n = 2 Then

 Shape1(2).Visible = True

 Shape1(4).Visible = True

 Shape2.FillColor = &H8080FF

End If

If n = 3 Then

 Shape1(2).Visible = True

 Shape1(3).Visible = True

 Shape1(4).Visible = True

 Shape2.FillColor = &H80FF&

 End If

If n = 4 Then

 Shape1(0).Visible = True

 Shape1(2).Visible = True

 Shape1(4).Visible = True

24

 Shape1(6).Visible = True

 Shape2.FillColor = &HFFFF00

 End If

If n = 5 Then

 Shape1(0).Visible = True

 Shape1(2).Visible = True

 Shape1(3).Visible = True

 Shape1(4).Visible = True

 Shape1(6).Visible = True

 Shape2.FillColor = &HFFFF&

 End If

 If n = 6 Then

 Shape1(0).Visible = True

 Shape1(1).Visible = True

 Shape1(2).Visible = True

 Shape1(4).Visible = True

 Shape1(5).Visible = True

 Shape1(6).Visible = True

 Shape2.FillColor = &HFF00FF

 End If

End Sub

25

1.5 Jigsaw Puzzle

Jigsaw puzzle is a game that requires the player to fix back the

pieces of a picture that were cut into pieces and jumbled up. There

are many levels of difficulties, some are easy whereas some are

difficult.

You can create a simple 3x3 jigsaw puzzle using Visual Basic 6.

You may program it in such a way that you can drag and drop the

pieces in the squares that you think are correct. If the piece is

correct, it will stay in the correct square otherwise it will not stay

there. The UI is as shown in Figure 1.6

Figure 1.6

26

The code

Dim imgindex As Integer

Dim imgtag As String

Private Sub Image1_DragDrop(Index As Integer, Source As Control, X

As Single, _

Y As Single)

imgtag = Source.Tag

imgindex = Index

Select Case imgindex

Case 0

If imgtag = "11" Then

 Image1(0).Picture = Image1(9).Picture

 Source.Visible = False

Else

Source.Visible = True

End If

Case 1

If imgtag = "12" Then

 Image1(1).Picture = Image1(10).Picture

 Source.Visible = False

Else

Source.Visible = True

End If

Case 2

If imgtag = 13 Then

 Image1(2).Picture = Image1(11).Picture

27

 Source.Visible = False

Else

Source.Visible = True

End If

Case 3

If imgtag = 21 Then

 Image1(3).Picture = Image1(12).Picture

 Source.Visible = False

Else

Source.Visible = True

End If

Case 4

If imgtag = 22 Then

 Image1(4).Picture = Image1(13).Picture

 Source.Visible = False

Else

Source.Visible = True

End If

Case 5

If imgtag = 23 Then

 Image1(5).Picture = Image1(14).Picture

 Source.Visible = False

Else

Source.Visible = True

End If

28

Case 6

If imgtag = 31 Then

 Image1(6).Picture = Image1(15).Picture

 Source.Visible = False

Else

Source.Visible = True

End If

Case 7

If imgtag = 32 Then

 Image1(7).Picture = Image1(16).Picture

 Source.Visible = False

Else

Source.Visible = True

End If

Case 8

If imgtag = 33 Then

 Image1(8).Picture = Image1(17).Picture

 Source.Visible = False

Else

Source.Visible = True

End If

End Select

End Sub

29

1.6 Memory Game

This is a typical memory game for children. The user must click the

rectangles to reveal the hidden pictures and if the two pictures are

matched, they will disappear together. He or she wins the game

when all the pictures are cleared.

In this program, you need to add an array of twelve image controls

and twelve picture boxes to the form and cover the images with the

picture boxes. To match the images, you can use tags to identify

them; same image should be given the same tag. The tags are being

set at the images' properties windows. When two picture boxes

covering the images is being clicked, the program checks for the

tags of the images and if found that they are the same, then they

become invisible. The UI is as shown in Figure 1.7

Figure 1.7

30

The code

Sub check()

'Check whether the images are the same or not

For i = 0 To 11

If Picture1(i).Visible = False Then

For j = 0 To 11

If Picture1(j).Visible = False Then

If i <> j And Image1(i).Tag = Image1(j).Tag Then

Image1(j).Visible = False

Image1(i).Visible = False

Picture1(j).Visible = False

Picture1(i).Visible = False

End If

If i <> j And Image1(i).Tag <> Image1(j).Tag And Image1(i).Visible =

True And _ Image1(j).Visible = True Then

Picture1(j).Visible = True

Picture1(i).Visible = True

End If

End If

Next j

End If

Next i

Timer1.Enabled = False

31

If Picture1(0).Visible = False _

And Picture1(1).Visible = False _

And Picture1(2).Visible = False _

And Picture1(3).Visible = False _

And Picture1(4).Visible = False _

And Picture1(5).Visible = False _

And Picture1(6).Visible = False _

And Picture1(7).Visible = False _

And Picture1(8).Visible = False _

And Picture1(9).Visible = False _

And Picture1(10).Visible = False _

And Picture1(11).Visible = False _

Then

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = "WaveAudio"

MMControl1.FileName = "D:\Liew Folder\VB

program\audio\applause.wav"

MMControl1.Command = "Open"

MMControl1.Command = "Play"

End If

End Sub

32

Private Sub picture1_Click(Index As Integer)

Picture1(Index).Visible = False

Timer1.Enabled = True

End Sub

Private Sub Timer1_Timer()

check

End Sub

33

1.7 Passwords Cracking Program

This is a password cracking program that can generate possible

passwords and compares each of them with the actual password. If

the generated password found to be equal to the actual password,

login will be successful. The UI is as shown in Figure 1.8

Figure 1.8

In this program, you need to add three timers to the form. Next,

enter the passwords generating code under each of the Timer ()

event by double-clicking the relevant timer. The interval of the

timers can be set in their properties window. An interval value of 1

is equivalent to 1 millisecond, and a value of 1000 is 1 second: the

smaller the value, the shorter the interval. The Timer’s Enabled

property is set to False so that the program will only start generating

the passwords after the user clicks on the command button.

34

You can generate random passwords by using the Rnd function.

Rnd is a Visual Basic function that generates a random number

between 0 and 1. Int is a Visual Basic function that returns an

integer by ignoring the decimal part of that number. For example,

Int(Rnd * 255) returns an integer between 0 and 255.

This program only deals with three-character passwords to make the

code simpler so that every reader can grasp the concept easily. To

generate the alphanumeric characters, you can use the Chr function.

The Chr function returns the string that corresponds to an ASCII

code. For example, Chr(65)=A and Chr(37)=%. There are altogether

255 characters. The program needs to generate the characters for

each of the characters in the passwords and compare them with the

corresponding character in the password entered by the user. To

achieve the purpose, you need to declare three integers, namely

code1, code2 and code 3, respectively. Each of the integers will

generate ASCII codes between 0 and 255 using the syntax

code1 = Int(Rnd * 255)

code2 = Int(Rnd * 255)

code3 = Int(Rnd * 255)

Besides that, you need to declare three strings; p1 to denote the first

character of the password, p2 to denote the second character of the

password and p3 to denote the third character of the password. You

can then use the Chr function to find the corresponding

alphanumeric character from randomly generated ASCII codes

using the following syntax:

 p1 = Chr(code1)

 p2 = Chr(code2)

 p3= Chr(code1)

After generating the characters, the program compares them to the

characters of the actual password using the following syntax:

35

If Chr(code1) = Left(password, 1) Then

 p1 = Chr(code1)

If Chr(code2) = Mid(password, 2, 1) Then

p2 = Chr(code2)

If Chr(code3) = Right(password, 1) Then

 p3 = Chr(code3)

In addition, the program uses If…Then…Else to check whether the

generated password is equal the actual password or not using the

following syntax:

Text1.Text = p1 & p2 & p3

If they are equal, the passwords generating process will be

terminated by setting the Timer1.Enabled property to False.

The Code

Dim password As String * 3

Dim crackpass As String

Dim p1, p2, p3 As String

Dim code1, code2, code3 As Integer

Dim x As Integer

Sub checkstatus()

Text1.Text = p1 & p2 & p3

If Text1.Text = password Then

Label1.Visible = True

Label1.Caption = "Password Cracked! Login Successful!"

Else

36

Text1.Text = Chr(code1) + Chr(code2) + Chr(code3)

Label1.Visible = True

Label1.Caption = "Generating passwords, please wait...."

End If

End Sub

Private Sub Command1_Click()

Timer1.Enabled = True

Timer2.Enabled = True

Timer3.Enabled = True

End Sub

Private Sub Command2_Click()

Text2.Visible = False

Label2.Visible = False

Command2.Visible = False

password = Text2.Text

End Sub

Private Sub Command3_Click()

Label1.Visible = False

Text2.Visible = True

Label2.Visible = True

Command2.Visible = True

Text2.Text = ""

Text1.Text = ""

End Sub

Private Sub Command4_Click()

37

Timer1.Enabled = False

Timer2.Enabled = False

Timer3.Enabled = False

Text1.Text = ""

Label1.Caption = "Please try again"

End Sub

Private Sub Command5_Click()

End

End Sub

Private Sub Timer1_Timer()

 code1 = Int(Rnd * 255)

If Chr(code1) = Left(password, 1) Then

 p1 = Chr(code1)

Timer1.Enabled = False

Else

checkstatus

 End If

checkstatus

End Sub

Private Sub Timer2_Timer()

code2 = Int(Rnd * 255)

If Chr(code2) = Mid(password, 2, 1) Then

 p2 = Chr(code2)

Timer2.Enabled = False

Else

38

checkstatus

 End If

checkstatus

End Sub

Private Sub Timer3_Timer()

 code3 = Int(Rnd * 255)

If Chr(code3) = Right(password, 1) Then

 p3 = Chr(code3)

Timer3.Enabled = False

Else

checkstatus

 End If

 checkstatus

 End Sub

39

1.8 Reversi

This is the mini version of the typical reversi game. The program

uses two sets of two-dimensional arrays (4x4) and declare them as

Boolean , one represents the white piece and the other one

represents the black piece. If a white piece or a black piece occupies

a square, the variable becomes True, otherwise it is False.

Using this concept, the program can check how many white and

black pieces appear on the reversi board and the positions they

occupy. The program uses If...Then and Select Case... End Select

statements to check for conditions whether a white piece or a black

piece can be placed in a certain position so that the pieces trapped in

between will change color. You can also add a procedure to display

the number of white pieces and the number of black pieces at any

one time and the name of the winner.

To design the interface, you need to insert an image control and

then copy and paste the image repeatedly to form a 4x4 array of

images. Each image is defined by its index. For example, Image1 (0)

is the first image Image1 (1) is the second image, Image1(2) is the

third image and so on. The positions of the images are shown in

Table 1.1

Table 1.1

Image1(12) Image1(13) Image1(14) Image1(15)

Image1(8) Image1(9) Image1(10) Image1(11)

Image1(4) Image1(5) Image1(6) Image1(7)

Image1(0) Image1(1) Image1(2) Image1(3)

40

Next, you need to create two images, a white solid circle, and a

black solid circle, save them as jpeg files. Load them into two

image controls on the form. You can use whatever name for the two

images, we used image17 to denote the while solid circle and

image18 to denote the black circle. The two images are particularly

important as you will later use the dragdrop method to enable the

user to drag and drop the images into the circles. The UI is as shown

in Figure 1.9

Figure 1.9

41

The Code

Option Base 1

Dim white(4, 4) As Boolean

Dim black(4, 4) As Boolean

Dim i, j, k, w, b As Integer

Dim imgtag As String

Private Sub Command1_Click()

'To reset the game

Label3.Caption = ""

Label4.Caption = ""

Label5.Visible = False

For m = 0 To 15

Image1(m).Picture = LoadPicture("")

Next m

Image1(5).Picture = Image18.Picture

Image1(10).Picture = Image18.Picture

Image1(9).Picture = Image17.Picture

Image1(6).Picture = Image17.Picture

Checkstatus

End Sub

Private Sub Command2_Click()

End

End Sub

Private Sub Form_Load()

42

Label5.Visible = False

Image1(5).Picture = Image18.Picture

Image1(10).Picture = Image18.Picture

Image1(9).Picture = Image17.Picture

Image1(6).Picture = Image17.Picture

End Sub

Private Sub Image1_DragDrop(Index As Integer, Source As Control, X

As Single, Y As Single)

imgtag = Source.Tag

checkstatus

'To check whether image1(0)is destination of dragdrop and make sure

it is empty

If Index = 0 And black(1, 1) = False And white(1, 1) = False Then

Select Case imgtag

Case "white"

'Check row

If black(2, 1) = True And white(3, 1) = True Then

Image1(0).Picture = Image17.Picture

Image1(1).Picture = Image17.Picture

End If

If black(2, 1) = True And black(3, 1) = True And white(4, 1) = True Then

Image1(0).Picture = Image17.Picture

Image1(1).Picture = Image17.Picture

Image1(2).Picture = Image17.Picture

End If

43

'check diagonal

If black(2, 2) = True And white(3, 3) = True Then

Image1(0).Picture = Image17.Picture

Image1(5).Picture = Image17.Picture

End If

If black(2, 2) = True And black(3, 3) = True And white(4, 4) = True Then

Image1(0).Picture = Image17.Picture

Image1(5).Picture = Image17.Picture

Image1(10).Picture = Image17.Picture

End If

'Check column

If black(1, 2) = True And white(1, 3) = True Then

Image1(0).Picture = Image17.Picture

Image1(4).Picture = Image17.Picture

End If

If black(1, 2) = True And black(1, 3) = True And white(1, 4) = True Then

Image1(0).Picture = Image17.Picture

Image1(4).Picture = Image17.Picture

Image1(8).Picture = Image17.Picture

End If

Case "black"

If white(2, 1) = True And black(3, 1) = True Then

Image1(0).Picture = Image18.Picture

Image1(1).Picture = Image18.Picture

End If

44

If white(2, 1) = True And white(3, 1) = True And black(4, 1) = True Then

Image1(0).Picture = Image18.Picture

Image1(1).Picture = Image18.Picture

Image1(2).Picture = Image18.Picture

End If

If white(2, 2) = True And black(3, 3) = True Then

Image1(0).Picture = Image18.Picture

Image1(5).Picture = Image18.Picture

End If

If white(2, 2) = True And white(3, 3) = True And black(4, 4) = True Then

Image1(0).Picture = Image18.Picture

Image1(5).Picture = Image18.Picture

Image1(10).Picture = Image18.Picture

End If

'Check column

If white(1, 2) = True And black(1, 3) = True Then

Image1(0).Picture = Image17.Picture

Image1(4).Picture = Image17.Picture

End If

If white(1, 2) = True And white(1, 3) = True And black(1, 4) = True Then

Image1(0).Picture = Image17.Picture

Image1(4).Picture = Image17.Picture

Image1(8).Picture = Image17.Picture

End If

End Select

End If

45

'To compute the probabilities for position (2,1)

If Index = 1 And black(2, 1) = False And white(2, 1) = False Then

checkstatus

Select Case imgtag

Case "white"

If black(3, 1) = True And white(4, 1) = True Then

Image1(1).Picture = Image17.Picture

Image1(2).Picture = Image17.Picture

End If

If black(3, 2) = True And white(4, 3) = True Then

Image1(1).Picture = Image17.Picture

Image1(6).Picture = Image17.Picture

End If

If black(2, 2) = True And white(2, 3) = True Then

Image1(1).Picture = Image17.Picture

Image1(5).Picture = Image17.Picture

End If

If black(2, 2) = True And black(2, 3) = True And white(2, 4) = True Then

Image1(1).Picture = Image17.Picture

Image1(5).Picture = Image17.Picture

Image1(9).Picture = Image17.Picture

End If

Case "black"

If white(3, 1) = True And black(4, 1) = True Then

Image1(1).Picture = Image18.Picture

46

Image1(2).Picture = Image18.Picture

End If

If white(3, 2) = True And black(4, 3) = True Then

Image1(1).Picture = Image18.Picture

Image1(6).Picture = Image18.Picture

End If

If white(2, 2) = True And black(2, 3) = True Then

Image1(1).Picture = Image18.Picture

Image1(5).Picture = Image18.Picture

End If

If white(2, 2) = True And white(2, 3) = True And black(2, 4) = True Then

Image1(1).Picture = Image18.Picture

Image1(5).Picture = Image18.Picture

Image1(9).Picture = Image18.Picture

End If

End Select

End If

'To compute the position for (3,1)

If Index = 2 And black(3, 1) = False And white(3, 1) = False Then

Select Case imgtag

Case "white"

If black(2, 1) = True And white(1, 1) = True Then

Image1(1).Picture = Image17.Picture

Image1(2).Picture = Image17.Picture

End If

47

If black(2, 2) = True And white(1, 3) = True Then

Image1(2).Picture = Image17.Picture

Image1(5).Picture = Image17.Picture

End If

If black(3, 2) = True And white(3, 3) = True Then

Image1(2).Picture = Image17.Picture

Image1(6).Picture = Image17.Picture

End If

If black(3, 2) = True And black(3, 3) = True And white(3, 4) = True Then

Image1(2).Picture = Image17.Picture

Image1(6).Picture = Image17.Picture

Image1(10).Picture = Image17.Picture

End If

Case "black"

If white(2, 1) = True And black(1, 1) = True Then

Image1(1).Picture = Image18.Picture

Image1(2).Picture = Image18.Picture

End If

If white(2, 2) = True And black(1, 3) = True Then

Image1(2).Picture = Image18.Picture

Image1(5).Picture = Image18.Picture

End If

If white(3, 2) = True And black(3, 3) = True Then

Image1(2).Picture = Image18.Picture

48

Image1(6).Picture = Image18.Picture

End If

If white(3, 2) = True And white(3, 3) = True And black(3, 4) = True Then

Image1(2).Picture = Image18.Picture

Image1(6).Picture = Image18.Picture

Image1(10).Picture = Image18.Picture

End If

End Select

End If

'To compute position (4,1)

If Index = 3 And black(4, 1) = False And white(4, 1) = False Then

Select Case imgtag

Case "white"

If black(3, 1) = True And white(2, 1) = True Then

Image1(2).Picture = Image17.Picture

Image1(3).Picture = Image17.Picture

End If

If black(3, 1) = True And black(2, 1) = True And white(1, 1) = True Then

Image1(1).Picture = Image17.Picture

Image1(2).Picture = Image17.Picture

Image1(3).Picture = Image17.Picture

End If

If black(3, 2) = True And white(2, 3) = True Then

Image1(3).Picture = Image17.Picture

Image1(6).Picture = Image17.Picture

49

End If

If black(3, 2) = True And black(2, 3) = True And white(1, 4) = True Then

Image1(3).Picture = Image17.Picture

Image1(6).Picture = Image17.Picture

Image1(9).Picture = Image17.Picture

End If

If black(4, 2) = True And white(4, 3) = True Then

Image1(3).Picture = Image17.Picture

Image1(7).Picture = Image17.Picture

End If

If black(4, 2) = True And black(4, 3) = True And white(4, 4) = True Then

Image1(3).Picture = Image17.Picture

Image1(7).Picture = Image17.Picture

Image1(11).Picture = Image17.Picture

End If

Case "black"

If white(3, 1) = True And black(2, 1) = True Then

Image1(2).Picture = Image18.Picture

Image1(3).Picture = Image18.Picture

End If

If white(3, 1) = True And white(2, 1) = True And black(1, 1) = True Then

Image1(1).Picture = Image18.Picture

Image1(2).Picture = Image18.Picture

Image1(3).Picture = Image18.Picture

End If

50

If white(3, 2) = True And black(2, 3) = True Then

Image1(3).Picture = Image18.Picture

Image1(6).Picture = Image18.Picture

End If

If white(4, 2) = True And black(4, 3) = True Then

Image1(3).Picture = Image18.Picture

Image1(7).Picture = Image18.Picture

End If

If white(4, 2) = True And white(4, 3) = True And black(4, 4) = True Then

Image1(3).Picture = Image18.Picture

Image1(7).Picture = Image18.Picture

Image1(11).Picture = Image18.Picture

End If

If white(3, 2) = True And white(2, 3) = True And black(1, 4) = True Then

Image1(3).Picture = Image18.Picture

Image1(6).Picture = Image18.Picture

Image1(9).Picture = Image18.Picture

End If

End Select

End If

'To compute position (1,2)

If Index = 4 And black(1, 2) = False And white(1, 2) = False Then

Select Case imgtag

Case "white"

'Check row

51

If black(2, 2) = True And white(3, 2) = True Then

Image1(4).Picture = Image17.Picture

Image1(5).Picture = Image17.Picture

End If

If black(2, 2) = True And black(3, 2) = True And white(4, 2) = True Then

Image1(4).Picture = Image17.Picture

Image1(5).Picture = Image17.Picture

Image1(6).Picture = Image17.Picture

End If

'check column

If black(1, 3) = True And white(1, 4) = True Then

Image1(4).Picture = Image17.Picture

Image1(8).Picture = Image17.Picture

End If

'check diagonal

If black(2, 3) = True And white(3, 4) = True Then

Image1(4).Picture = Image17.Picture

Image1(9).Picture = Image17.Picture

End If

Case "black"

If white(2, 2) = True And black(3, 2) = True _

And black(2, 2) = False And white(3, 2) = False Then

Image1(4).Picture = Image18.Picture

Image1(5).Picture = Image18.Picture

End If

52

If white(2, 2) = True And white(3, 2) = True And black(4, 2) = True Then

Image1(4).Picture = Image18.Picture

Image1(5).Picture = Image18.Picture

Image1(6).Picture = Image18.Picture

End If

If white(1, 3) = True And black(1, 4) = True Then

Image1(4).Picture = Image18.Picture

Image1(8).Picture = Image18.Picture

End If

If white(2, 3) = True And black(3, 4) = True _

And black(2, 3) = False And white(3, 4) = False Then

Image1(4).Picture = Image18.Picture

Image1(9).Picture = Image18.Picture

End If

End Select

End If

'To compute position (4,2)

If Index = 7 And black(4, 2) = False And white(4, 2) = False Then

Select Case imgtag

Case "white"

'Check row

If black(3, 2) = True And white(2, 2) = True Then

Image1(6).Picture = Image17.Picture

Image1(7).Picture = Image17.Picture

End If

53

If black(3, 2) = True And black(2, 2) = True And white(1, 2) = True Then

Image1(5).Picture = Image17.Picture

Image1(6).Picture = Image17.Picture

Image1(7).Picture = Image17.Picture

End If

'check column

If black(4, 3) = True And white(4, 4) = True Then

Image1(7).Picture = Image17.Picture

Image1(11).Picture = Image17.Picture

End If

'check diagonal

If black(3, 3) = True And white(2, 4) = True Then

Image1(7).Picture = Image17.Picture

Image1(10).Picture = Image17.Picture

End If

Case "black"

If white(3, 2) = True And black(2, 2) = True Then

Image1(6).Picture = Image18.Picture

Image1(7).Picture = Image18.Picture

End If

If white(2, 2) = True And white(3, 2) = True And black(1, 2) = True Then

Image1(5).Picture = Image18.Picture

Image1(6).Picture = Image18.Picture

Image1(7).Picture = Image18.Picture

End If

54

If white(4, 3) = True And black(4, 4) = True Then

Image1(7).Picture = Image18.Picture

Image1(11).Picture = Image18.Picture

End If

If white(3, 3) = True And black(2, 4) = True Then

Image1(7).Picture = Image18.Picture

Image1(10).Picture = Image18.Picture

End If

End Select

End If

'To compute position (1,3)

If Index = 8 And black(1, 3) = False And white(1, 3) = False Then

Select Case imgtag

Case "white"

'Check row

If black(2, 3) = True And white(3, 3) = True Then

Image1(8).Picture = Image17.Picture

Image1(9).Picture = Image17.Picture

End If

If black(2, 3) = True And black(3, 3) = True And white(4, 3) = True Then

Image1(8).Picture = Image17.Picture

Image1(9).Picture = Image17.Picture

Image1(10).Picture = Image17.Picture

End If

55

'check column

If black(1, 2) = True And white(1, 1) = True Then

Image1(4).Picture = Image17.Picture

Image1(8).Picture = Image17.Picture

End If

'check diagonal

If black(2, 2) = True And white(3, 1) = True Then

Image1(5).Picture = Image17.Picture

Image1(8).Picture = Image17.Picture

End If

Case "black"

If white(2, 3) = True And black(3, 3) = True Then

Image1(8).Picture = Image18.Picture

Image1(9).Picture = Image18.Picture

End If

If white(2, 3) = True And white(3, 3) = True And black(4, 2) = True Then

Image1(8).Picture = Image18.Picture

Image1(9).Picture = Image18.Picture

Image1(10).Picture = Image18.Picture

End If

If white(1, 2) = True And black(1, 1) = True Then

Image1(4).Picture = Image18.Picture

Image1(8).Picture = Image18.Picture

End If

56

If white(2, 2) = True And black(3, 1) = True Then

Image1(5).Picture = Image18.Picture

Image1(8).Picture = Image18.Picture

End If

End Select

End If

'To compute position (4,3)

If Index = 11 And black(4, 3) = False And white(4, 3) = False Then

Select Case imgtag

Case "white"

'Check Left

If black(3, 3) = True And white(2, 3) = True Then

Image1(10).Picture = Image17.Picture

Image1(11).Picture = Image17.Picture

End If

If black(3, 3) = True And black(2, 3) = True And white(1, 3) = True Then

Image1(9).Picture = Image17.Picture

Image1(10).Picture = Image17.Picture

Image1(11).Picture = Image17.Picture

End If

'check column

If black(4, 2) = True And white(4, 1) = True Then

Image1(7).Picture = Image17.Picture

Image1(11).Picture = Image17.Picture

End If

57

'check diagonal

If black(3, 2) = True And white(2, 1) = True Then

Image1(6).Picture = Image17.Picture

Image1(11).Picture = Image17.Picture

End If

Case "black"

If white(3, 3) = True And black(2, 3) = True Then

Image1(10).Picture = Image18.Picture

Image1(11).Picture = Image18.Picture

End If

If white(3, 3) = True And white(2, 3) = True And black(1, 3) = True Then

Image1(9).Picture = Image18.Picture

Image1(10).Picture = Image18.Picture

Image1(11).Picture = Image18.Picture

End If

If white(4, 2) = True And black(4, 1) = True Then

Image1(7).Picture = Image18.Picture

Image1(11).Picture = Image18.Picture

End If

If white(3, 2) = True And black(2, 1) = True Then

Image1(6).Picture = Image18.Picture

Image1(11).Picture = Image18.Picture

End If

End Select

End If

58

'To compute position (1,4)

If Index = 12 And black(1, 4) = False And white(1, 4) = False Then

Select Case imgtag

Case "white"

'Check row

If black(2, 4) = True And white(3, 4) = True Then

Image1(12).Picture = Image17.Picture

Image1(13).Picture = Image17.Picture

End If

If black(2, 4) = True And black(3, 4) = True And white(4, 4) = True Then

Image1(12).Picture = Image17.Picture

Image1(13).Picture = Image17.Picture

Image1(14).Picture = Image17.Picture

End If

'check column

If black(1, 3) = True And white(1, 2) = True Then

Image1(8).Picture = Image17.Picture

Image1(12).Picture = Image17.Picture

End If

If black(1, 3) = True And black(1, 2) = True And white(1, 1) = True Then

Image1(4).Picture = Image17.Picture

Image1(8).Picture = Image17.Picture

Image1(12).Picture = Image17.Picture

End If

59

'check diagonal

If black(2, 3) = True And white(3, 2) = True Then

Image1(9).Picture = Image17.Picture

Image1(12).Picture = Image17.Picture

End If

If black(2, 3) = True And black(3, 2) = True And white(4, 1) = True Then

Image1(6).Picture = Image17.Picture

Image1(9).Picture = Image17.Picture

Image1(12).Picture = Image17.Picture

End If

Case "black"

'Check row

If white(2, 4) = True And black(3, 4) = True Then

Image1(12).Picture = Image18.Picture

Image1(13).Picture = Image18.Picture

End If

If white(2, 4) = True And white(3, 4) = True And black(4, 4) = True Then

Image1(12).Picture = Image18.Picture

Image1(13).Picture = Image18.Picture

Image1(14).Picture = Image18.Picture

End If

'check column

If white(1, 3) = True And black(1, 2) = True Then

Image1(4).Picture = Image18.Picture

Image1(8).Picture = Image18.Picture

60

End If

If white(1, 3) = True And black(1, 2) = True And black(1, 1) = True Then

Image1(4).Picture = Image18.Picture

Image1(8).Picture = Image18.Picture

Image1(12).Picture = Image18.Picture

End If

'check diagonal

If white(2, 3) = True And black(3, 2) = True Then

Image1(9).Picture = Image18.Picture

Image1(12).Picture = Image18.Picture

End If

If white(2, 3) = True And white(3, 2) = True And black(4, 1) = True Then

Image1(6).Picture = Image18.Picture

Image1(9).Picture = Image18.Picture

Image1(12).Picture = Image18.Picture

End If

End Select

End If

'To compute position (2,4)

If Index = 13 And black(2, 4) = False And white(2, 4) = False Then

Select Case imgtag

Case "white"

'Check row

If black(3, 4) = True And white(4, 4) = True Then

Image1(13).Picture = Image17.Picture

61

Image1(14).Picture = Image17.Picture

End If

'check column

If black(2, 3) = True And white(2, 2) = True Then

Image1(9).Picture = Image17.Picture

Image1(13).Picture = Image17.Picture

End If

If black(2, 3) = True And black(2, 2) = True And white(2, 1) = True Then

Image1(5).Picture = Image17.Picture

Image1(9).Picture = Image17.Picture

Image1(13).Picture = Image17.Picture

End If

'check diagonal

If black(3, 3) = True And white(4, 2) = True Then

Image1(10).Picture = Image17.Picture

Image1(13).Picture = Image17.Picture

End If

Case "black"

'Check row

If white(3, 4) = True And black(4, 4) = True Then

Image1(13).Picture = Image18.Picture

Image1(14).Picture = Image18.Picture

End If

'check column

If white(2, 3) = True And black(2, 2) = True Then

62

Image1(9).Picture = Image18.Picture

Image1(13).Picture = Image18.Picture

End If

If white(2, 3) = True And white(2, 2) = True And black(2, 1) = True Then

Image1(5).Picture = Image18.Picture

Image1(9).Picture = Image18.Picture

Image1(13).Picture = Image18.Picture

End If

'check diagonal

If white(3, 3) = True And black(4, 2) = True Then

Image1(10).Picture = Image18.Picture

Image1(13).Picture = Image18.Picture

End If

End Select

End If

'To compute position (3,4)

If Index = 14 And black(3, 4) = False And white(3, 4) = False Then

Select Case imgtag

Case "white"

'Check row

If black(2, 4) = True And white(1, 4) = True Then

Image1(13).Picture = Image17.Picture

Image1(14).Picture = Image17.Picture

End If

63

'check column

If black(3, 3) = True And white(3, 2) = True Then

Image1(10).Picture = Image17.Picture

Image1(14).Picture = Image17.Picture

End If

If black(3, 3) = True And black(3, 2) = True And white(3, 1) = True Then

Image1(6).Picture = Image17.Picture

Image1(10).Picture = Image17.Picture

Image1(14).Picture = Image17.Picture

End If

'check diagonal

If black(2, 3) = True And white(1, 2) = True Then

Image1(9).Picture = Image17.Picture

Image1(14).Picture = Image17.Picture

End If

Case "black"

'Check row

If white(2, 4) = True And black(1, 4) = True Then

Image1(13).Picture = Image18.Picture

Image1(14).Picture = Image18.Picture

End If

'check column

If white(3, 3) = True And black(3, 2) = True Then

Image1(10).Picture = Image18.Picture

Image1(14).Picture = Image18.Picture

64

End If

If white(3, 3) = True And white(3, 2) = True And black(3, 1) = True Then

Image1(6).Picture = Image18.Picture

Image1(10).Picture = Image18.Picture

Image1(14).Picture = Image18.Picture

End If

'check diagonal

If white(2, 3) = True And black(1, 2) = True Then

Image1(9).Picture = Image18.Picture

Image1(14).Picture = Image18.Picture

End If

End Select

End If

'To compute position (4,4)

If Index = 15 And black(4, 4) = False And white(4, 4) = False Then

Select Case imgtag

Case "white"

'Check row

If black(3, 4) = True And white(2, 4) = True Then

Image1(14).Picture = Image17.Picture

Image1(15).Picture = Image17.Picture

End If

If black(3, 4) = True And black(2, 4) = True And white(1, 4) = True Then

Image1(13).Picture = Image17.Picture

Image1(14).Picture = Image17.Picture

65

Image1(15).Picture = Image17.Picture

End If

'check column

If black(4, 3) = True And white(4, 2) = True Then

Image1(11).Picture = Image17.Picture

Image1(15).Picture = Image17.Picture

End If

If black(4, 3) = True And black(4, 2) = True And white(4, 1) = True Then

Image1(7).Picture = Image17.Picture

Image1(11).Picture = Image17.Picture

Image1(15).Picture = Image17.Picture

End If

'check diagonal

If black(3, 3) = True And white(2, 2) = True Then

Image1(10).Picture = Image17.Picture

Image1(15).Picture = Image17.Picture

End If

If black(3, 3) = True And black(2, 2) = True And white(1, 1) = True Then

Image1(5).Picture = Image17.Picture

Image1(10).Picture = Image17.Picture

Image1(15).Picture = Image17.Picture

End If

Case "black"

'Check row

66

If white(3, 4) = True And black(2, 4) = True Then

Image1(14).Picture = Image18.Picture

Image1(15).Picture = Image18.Picture

End If

If white(3, 4) = True And white(2, 4) = True And black(1, 4) = True Then

Image1(13).Picture = Image18.Picture

Image1(14).Picture = Image18.Picture

Image1(15).Picture = Image18.Picture

End If

'check column

If white(4, 3) = True And black(4, 2) = True Then

Image1(11).Picture = Image18.Picture

Image1(15).Picture = Image18.Picture

End If

If white(4, 3) = True And white(4, 2) = True And black(4, 1) = True Then

Image1(7).Picture = Image18.Picture

Image1(11).Picture = Image18.Picture

Image1(15).Picture = Image18.Picture

End If

'check diagonal

If white(3, 3) = True And black(2, 2) = True Then

Image1(10).Picture = Image18.Picture

Image1(15).Picture = Image18.Picture

End If

67

If white(3, 3) = True And white(2, 2) = True And black(1, 1) = True Then

Image1(5).Picture = Image18.Picture

Image1(10).Picture = Image18.Picture

Image1(15).Picture = Image18.Picture

End If

End Select

End If

countcolor

If w + b = 16 Or b = 0 Or w = 0 Then

If w > b Then

Label5.Visible = True

Label5.Caption = " White Wins"

Else

Label5.Visible = True

Label5.Caption = "Black Wins"

End If

End If

End Sub

Sub checkstatus()

k = 0

For j = 1 To 4

For i = 1 To 4

If Image1(k).Picture = Image17.Picture Then

 white(i, j) = True

 Else: white(i, j) = False

End If

68

If Image1(k).Picture = Image18.Picture Then

 black(i, j) = True

Else

black(i, j) = False

 End If

k = k + 1

Next i

Next j

End Sub

Sub countcolor()

k = 0

w = 0

b = 0

For j = 1 To 4

For i = 1 To 4

If Image1(k).Picture = Image17.Picture Then

 white(i, j) = True

 w = w + 1

 Else: white(i, j) = False

End If

If Image1(k).Picture = Image18.Picture Then

 black(i, j) = True

 b = b + 1

Else

black(i, j) = False

69

 End If

k = k + 1

Print n

Next i

Next j

Label3.Caption = Str$(w)

Label4.Caption = Str$(b)

End Sub

70

1.9 Snakes and Ladders Game

Snakes and Ladders game is a popular board game for young

children. This game usually involves two or more players who take

turns to move by rolling a die. On the way to the finishing point, the

players will encounter several obstacles in the form of snakes and

some opportunities in the form of ladders. Whenever the player

encounters a snake, or more accurately, the snake’s head, he or she

will be thrown back to an earlier position, which is at the snake’s

tail. On the other hand, whenever the player encounters a ladder, he

or she can climb up the ladder to a higher position. The player who

reaches the finishing point first wins the game. The UI is as shown

in Figure 1.10.

Figure 1.10

To design the program, we must apply some mathematical logics.

Since the board comprises 10 rows and 10 columns, each box thus

71

represents a cell with the relevant coordinates (column, row).

Therefore, you need to define the coordinates of every cell by

declaring two arrays, row (10) and col (10) respectively at the

beginning of the procedure. To move the piece on the board, you

can use the method object.move col(i), row(j), where the program

can initiate the values of col(i) and row(j) via a For...Next loop. As

the motion is in a zigzag manner, you must control the motion using

reverse order and by imposing some conditions.

The first step in creating the game is to design the board using 100

Label controls. The Label controls are numbered from 1 to 100.

You shall fill these labels with different colors to give it a more

appealing look. Next, insert several pictures of snakes using the

image box and then draw the ladders using the line tool. In addition,

you need to draw the die with the shape control, and add in the

command buttons for rolling the die, starting a new game as well as

exiting the game. Besides that, you need to insert two images to

denote the players and then insert a Label for the declaration of the

winner. Lastly, insert two timers for animation purpose.

The initial part of the program is to declare various variables. The

two most important variables are the arrays c (10) and r (10). The

array r (10) represents row numbers, where r(1)=row 1, r(2)=row 2

until r(10)=row 10. Similarly, c (10) represents the column numbers,

where c (1) =column 1, c (2) =column 2 until c (10) =column 10.

After declaring the variables, you need to assign the coordinates of

the center of all the boxes which is denoted by (column, row) or (c

(i), r (i)), using the procedure below:

Private Sub Form_Load ()

c (1) = 600

r(1) = 8200

For i = 1 To 9

c (i + 1) = c (i) + 800

Next

72

For j = 1 To 9

r (j + 1) = r (j) - 800

Next

End Sub

Next, you must assign the initial position of the center of the first

box (Label) by looking at its distance from the left as well as from

the top, and also its width, in the properties window. In this program,

the distance of the first box from the left is 400 twips, and its width

is 800 twips, therefore its center is 600 twips from the left. Using

the statement c (i + 1) = c (i) + 800 within a For…Next loop, the

distance between successive columns will be fixed at 800 twips.

Similarly, the distance between rows can be determined using the

same logic. The next most important step is to control the

movement of the players’ pieces. To do this, you must use the

variables totalnum and totalnum1 to denote the accumulated scores

of the die for player 1 and player 2, respectively. For example, if the

first score of the die is 3 and the second score of the die is 6 for

player 1, then totalnum=9. You need to write the procedure for

every row individually so that motion will be in a zigzag manner as

shown in Table 1.2

73

Table 1.2 Movement of the pieces

For the first row and for player 1, you can use the following

procedure:

If player = 1 Then

totalnum = totalnum + num

If totalnum < 11 Then

Image1 (0).Move c (totalnum), r (1)

End If

Num is the score which appears on the die and totalnum is added to

num to get the accumulated scores. In the first row, the number on

the rightmost square is 10, which is equal to the number of columns

across the first row. The statement Image1 (0).Move c (totalnum), r

(1) uses the Move method to move piece 1 (Image1(0)) across the

74

column from left to right . For the movement in the second row, the

direction is from right to left, so you need to use the following

procedure:

If totalnum > 10 And totalnum < 21 Then

Image1 (0).Move c (21 - totalnum), r (2)

End If

The statement Image1 (0).Move c(21 - totalnum), r(2) will move

Image1(0) from the position c(10), r(2) to c(1), r(2), i.e. from the

square with number 11 to the square with number 20. The

movement of the pieces for other positions follows the same logics.

The procedure to move the pieces has to be placed under the Private

Sub Timer1_Timer procedure (set the Timer1’s interval to a certain

value).

Before the program can work, you will need to write code for the

die, which will determine how many steps the pieces will move.

The interface of the die consists of 7 round shapes that are placed in

a rounded square as shown in Figure 1.11.

Figure 1.11

75

The seven round shapes are inserted as a control array with names

starting with shape1 (0) to shape1 (6). The shape in the center is

shape1 (3). The appearance of the round shapes are controlled by a

randomization process that produce six random numbers using the

statement num = Int(1 + Rnd * 6). For example, when num=1, only

the round shape in the center appears while other round shapes are

made invisible. Other combinations are using the same logic.

The Code

Option Base 1

Dim c (10) As Variant

Dim r (10) As Variant

 Dim x As Integer

 Dim m As Integer

 Dim n As Integer

 Dim num As Integer

 Dim totalnum As Single

 Dim totalnum1 As Single

 Dim player As Integer

 Dim t As Integer

 Private Sub Command2_Click()

'To move the pieces to the original position

Image1 (0).Move 10200, 5520

Image1 (1).Move 10200, 6480

Totalnum = 0

totalnum1 = 0

Label2.Caption = ""

MMControl1.Command = "close"

76

End Sub

Private Sub Command3_Click ()

End

End Sub

Private Sub Form_Load ()

'To assign the column and row coordinates to all the boxes

c (1) = 600

r (1) = 8200

For i = 1 To 9

c (i + 1) = c (i) + 800

Next

For j = 1 To 9

r (j + 1) = r (j) - 800

Next

End Sub

'To roll the die

Private Sub roll ()

x = x + 10

Randomize Timer

num = Int(1 + Rnd * 6)

For i = 0 To 6

 Shape1 (i).Visible = False

Next

If num = 1 Then

 Shape1 (3).Visible = True

77

 Shape2.FillColor = &HC0C0C0

 End If

If num = 2 Then

 Shape1 (2).Visible = True

 Shape1 (4).Visible = True

 Shape2.FillColor = &H8080FF

End If

If num = 3 Then

 Shape1 (2).Visible = True

 Shape1 (3).Visible = True

 Shape1 (4).Visible = True

 Shape2.FillColor = &H80FF&

 End If

If num = 4 Then

 Shape1 (0).Visible = True

 Shape1 (2).Visible = True

 Shape1 (4).Visible = True

 Shape1 (6).Visible = True

 Shape2.FillColor = &HFFFF00

 End If

If num = 5 Then

 Shape1 (0).Visible = True

 Shape1 (2).Visible = True

 Shape1 (3).Visible = True

 Shape1 (4).Visible = True

 Shape1 (6).Visible = True

78

 Shape2.FillColor = &HFFFF&

 End If

 If num = 6 Then

 Shape1 (0).Visible = True

 Shape1 (1).Visible = True

 Shape1 (2).Visible = True

 Shape1 (4).Visible = True

 Shape1 (5).Visible = True

 Shape1 (6).Visible = True

 Shape2.FillColor = &HFF00FF

 End If

End Sub

Private Sub Command1_Click (Index As Integer)

'To identify which player is clicking the roll die command

If Index = 0 Then

player = 1

End If

If Index = 1 Then

player = 2

End If

Timer1.Enabled = True

x = 0

End Sub

79

Private Sub Timer1_Timer ()

If x < 100 Then

Call roll

Else

Timer1.Enabled = False

'To move player 1 according to the total score of the die

'Movement across column 1 to column 10 and row 1 to row 10

If player = 1 Then

totalnum = totalnum + num

If totalnum < 11 Then

Image1 (0).Move c (totalnum), r (1)

If totalnum = 10 Then

Image1 (0).Move c (8), r (3)

totalnum = 28

End If

End If

If totalnum > 10 And totalnum < 21 Then

Image1 (0).Move c (21 - totalnum), r (2)

If totalnum = 17 Then

Image1 (0).Move c (4), r (4)

Totalnum = 37

End If

End If

If totalnum > 20 And totalnum < 31 Then

80

Image1 (0).Move c (totalnum - 20), r(3)

End If

If totalnum > 30 And totalnum < 41 Then

Image1 (0).Move c (41 - totalnum), r(4)

If totalnum = 34 Then

Image1 (0).Move c(5), r(2)

totalnum = 16

End If

If totalnum = 31 Then

Image1 (0).Move c (10), r (7)

totalnum = 70

End If

End If

If totalnum > 40 And totalnum < 51 Then

Image1 (0).Move c (totalnum - 40), r (5)

If totalnum = 45 Then

Image1 (0).Move c (4), r (9)

totalnum = 84

End If

If totalnum = 44 Then

Image1 (0).Move c(1), r(3)

totalnum = 21

End If

End If

If totalnum > 50 And totalnum < 61 Then

Image1 (0).Move c (61 - totalnum), r (6)

81

End If

If totalnum > 60 And totalnum < 71 Then

Image1 (0).Move c (totalnum - 60), r (7)

If totalnum = 68 Then

Image1 (0).Move c (8), r (5)

totalnum = 48

End If

End If

If totalnum > 70 And totalnum < 81 Then

Image1 (0).Move c (81 - totalnum), r (8)

If totalnum = 79 Then

Image1 (0).Move c (2), r (6)

totalnum = 59

End If

If totalnum = 78 Then

Image1 (0).Move c (4), r (10)

totalnum = 97

End If

End If

If totalnum > 80 And totalnum < 91 Then

Image1 (0).Move c (totalnum - 80), r (9)

End If

If totalnum > 90 And totalnum < 101 Then

Image1 (0).Move c (101 - totalnum), r (10)

If totalnum = 95 Then

Image1 (0).Move c(8), r(8)

82

totalnum = 73

End If

End If

If totalnum > 100 Or totalnum = 100 Then

Image1 (0).Move c (1), r(10)

End If

End If

'To move player 2 according to the total score of the die

 If player = 2 Then

 totalnum1 = totalnum1 + num

If totalnum1 < 11 Then

Image1 (1).Move c (totalnum1), r(1)

If totalnum1 = 10 Then

Image1 (1).Move c (8), r(3)

totalnum1 = 28

End If

End If

If totalnum1 > 10 And totalnum1 < 21 Then

Image1 (1).Move c (21 - totalnum1), r (2)

If totalnum1 = 17 Then

Image1 (1).Move c (4), r (4)

totalnum1 = 37

End If

End If

If totalnum1 > 20 And totalnum1 < 31 Then

83

Image1 (1).Move c (totalnum1 - 20), r(3)

End If

If totalnum1 > 30 And totalnum1 < 41 Then

Image1 (1).Move c (41 - totalnum1), r(4)

If totalnum1 = 34 Then

Image1 (1).Move c (5), r(2)

totalnum1 = 16

End If

If totalnum1 = 31 Then

Image1(1).Move c (10), r(7)

totalnum1 = 70

End If

End If

If totalnum1 > 40 And totalnum1 < 51 Then

Image1(1).Move c(totalnum1 - 40), r(5)

If totalnum1 = 45 Then

Image1(1).Move c(4), r(9)

totalnum1 = 84

End If

If totalnum1 = 44 Then

Image1(1).Move c(1), r(3)

totalnum1 = 21

End If

End If

If totalnum1 > 50 And totalnum1 < 61 Then

Image1 (1).Move c (61 - totalnum1), r (6)

84

End If

If totalnum1 > 60 And totalnum1 < 71 Then

Image1 (1).Move c (totalnum1 - 60), r (7)

If totalnum1 = 68 Then

Image1 (1).Move c (8), r(5)

totalnum1 = 48

End If

End If

If totalnum1 > 70 And totalnum1 < 81 Then

Image1 (1).Move c (81 - totalnum1), r(8)

If totalnum1 = 79 Then

Image1 (1).Move c(2), r(6)

totalnum1 = 59

End If

If totalnum1 = 78 Then

Image1 (1).Move c (4), r (10)

totalnum1 = 97

End If

End If

If totalnum1 > 80 And totalnum1 < 91 Then

Image1 (1).Move c (totalnum1 - 80), r(9)

End If

If totalnum1 > 90 And totalnum1 < 101 Then

Image1 (1).Move c (101 - totalnum1), r (10)

If totalnum1 = 95 Then

Image1 (1).Move c (8), r (8)

85

totalnum1 = 73

End If

End If

If totalnum1 > 100 Or totalnum1 = 100 Then

Image1 (1).Move c (1), r (10)

End If

End If

'To play the applause sound when any one player reaches 100

If (totalnum > 100 Or totalnum = 100) And totalnum1 < 100 Then

Label2.Caption = "Player 1 Wins"

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = "WaveAudio"

MMControl1.FileName = " D:\MyDocument\VB _

program\audio\applause.wav"

MMControl1.Command = "Open"

MMControl1.Command = "Play"

End If

If (totalnum1 > 100 Or totalnum1 = 100) And totalnum < 100 Then

Label2.Caption = "Player 2 Wins"

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = "WaveAudio"

86

MMControl1.FileName = "D:\MyDocument\VB _

program\audio\applause.wav"

MMControl1.Command = "Open"

MMControl1.Command = "Play"

End If

End If

End Sub

87

1.10 Star War Game

The star war game is created using Visual Basic to demonstrate the

principle of projectile, a typical physics problem. When a projectile

is launched at a certain angle and with a certain initial velocity, the

projectile can reach a certain range. The maximum range is at an

angle of 45 degree. This principle can be applied in the military

field where a missile can be launched at a specific velocity and

angle to hit a remote target. It can also be applied in other scientific

and technological fields. This game provides a good training for

students in their abilities in making estimation. The Interface is as

shown in Figure 1.12.

Figure 12

88

In this program, you can use the expression v sin A - ½g t2 to

represent the vertical component of the displacement and v cos

A as the horizontal component of the displacement(where g is the

gravitational acceleration , v the launch velocity and A the launch

angle). To enable the missile to fly, you can use a combination of

the Object.Move method and the object position’s properties

object.left and Object.top.

You also need to use randomize method so that the objects will

appear at different positions randomly at each new game. In

addition, you can use the randomize method to load different

backgrounds at start up and at each new game.

The Code

Dim x As Variant

Dim a As Variant

Dim t As Variant

Dim y As Variant

Dim w As Variant

Dim i As Variant

Dim score As Integer

Dim left1, left2, left3, top1, top2, top3 As Variant

Dim backgr As Integer

Sub showfire()

Timer2.Enabled = True

End Sub

Sub reset()

'To move the missile to initial position

w = 0

89

Image1.Visible = True

Timer1.Enabled = False

Label4(0).Visible = False

Label4(1).Visible = False

Label4(2).Visible = False

Image1.Move 360, 6360

t = 0

End Sub

Private Sub Command1_Click()

Timer1.Enabled = True

End Sub

Private Sub Form_Click()

Label5.Visible = False

End Sub

Private Sub Form_Load()

left1 = Int(Rnd * 7000) + 1000

left2 = Int(Rnd * 7000) + 1000

left3 = Int(Rnd * 7000) + 1000

top1 = Int(Rnd * 5000) + 100

top2 = Int(Rnd * 5000) + 100

top3 = Int(Rnd * 5000) + 100

'To set the initial positions of the objects

Image2.Left = left1

Image3.Left = left2

Image4.Left = left3

90

Image2.Top = top1

Image3.Top = top2

Image4.Top = top3

w = 0

score = 0

Label7.Caption = Str$(score)

End Sub

Private Sub Image7_Click()

Label5.Visible = False

End Sub

Private Sub Instruct_Click()

Label5.Visible = True

Label5.Caption = "To play the game, you need to key in the velocity

and the angle. The range of angle should be between 0 and 90 degree.

After entering the above values, click launch to play. After every trial,

you must reset the game. After striking all the objects, press File menu

and select new game to play again."

End Sub

Private Sub mnuExit_Click()

End

End Sub

Private Sub mnunew_Click()

w = 0

Randomize Timer

91

'To display all the objects again

left1 = Int(Rnd * 7000) + 1000

left2 = Int(Rnd * 7000) + 1000

left3 = Int(Rnd * 7000) + 1000

top1 = Int(Rnd * 5000) + 100

top2 = Int(Rnd * 5000) + 100

top3 = Int(Rnd * 5000) + 100

Image2.Left = left1

Image3.Left = left2

Image4.Left = left3

Image2.Top = top1

Image3.Top = top2

Image4.Top = top3

Image2.Visible = True

Image3.Visible = True

Image4.Visible = True

Image1.Visible = True

Timer1.Enabled = False

Label4(0).Visible = False

Label4(1).Visible = False

Label4(0).Visible = False

Label3.Caption = ""

Image1.Move 360, 6360

t = 0

End Sub

92

Private Sub Timer1_Timer()

MMControl1.Command = "close"

If Image1.Left < 15000 And Image1.Top < 9000 Then

v = Val(Text1.Text)

a = Val(Text2.Text)

t = t + 1

'use the projectile formula to move the missile y=v(sinA)t -1/2(g)sinA,

x=v(cosA)t, A=Angle of launch

y = v * Sin(a * 3.141592654 / 180) * t - 4.9 * (t ^ 2)

x = v * Cos(a * 3.141592654 / 180) * t

Image1.Move Image1.Left + x, Image1.Top - y

If Image4.Visible = True And (Image1.Left < left3 + 240 And

Image1.Left > left3 - 240) And (Image1.Top < top3 + 240 And

Image1.Top > top3 - 240) Then

i = 2

Timer1.Enabled = False

showfire

Image4.Visible = False

Image1.Visible = False

'To trigger the sound

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = "WaveAudio"

MMControl1.FileName = "C:\My Documents\VB

program\audio\bomb.wav"

MMControl1.Command = "Open"

93

MMControl1.Command = "Play"

Label3.Caption = "You hit the satellite!"

Label4(2).Left = left3 + 240

Label4(2).Top = top3 + 240

Label4(2).Visible = True

Image5(2).Left = left3 + 240

Image5(2).Top = top3 + 240

score = score + 50

reset

ElseIf Image3.Visible = True And (Image1.Left < left2 + 240 And

Image1.Left > left2 - 240) And (Image1.Top < top2 + 240 And _

Image1.Top > top2 - 240) Then

Timer1.Enabled = False

i = 1

showfire

Image3.Visible = False

Image1.Visible = False

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = "WaveAudio"

MMControl1.FileName = "C:\ My Documents\VB

program\audio\bomb.wav"

MMControl1.Command = "Open"

MMControl1.Command = "Play"

Label3.Caption = "You hit the rocket!"

94

Label4(1).Left = left2 + 240

Label4(1).Top = top2 + 240

Label4(1).Visible = True

Image5(1).Left = left2 + 240

Image5(1).Top = top2 + 240

score = score + 100

reset

ElseIf Image2.Visible = True And (Image1.Left < left1 + 240 And _

Image1.Left > left1 - 240) And (Image1.Top < top1 + 240 And

Image1.Top > top1 - 240) Then

Timer1.Enabled = False

i = 0

showfire

Image2.Visible = False

Image1.Visible = False

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = "WaveAudio"

MMControl1.FileName = "C:\ My Documents\VB

program\audio\bomb.wav"

MMControl1.Command = "Open"

MMControl1.Command = "Play"

Label3.Caption = "You hit the Saturn!"

Label4(0).Left = left1 + 240

Label4(0).Top = top1 + 240

95

Label4(0).Visible = True

Image5(0).Left = left1 + 240

Image5(0).Top = top1 + 240

score = score + 200

reset

End If

Else

Label3.Caption = "You missed the target!"

Timer1.Enabled = False

reset

End If

'Show score

Label7.Caption = Str$(score)

End Sub

Private Sub Timer2_Timer()

w = w + 1

If w < 30 Then

Image5(i).Visible = True

Label4(i).Visible = True

Else

Image5(i).Visible = False

Label4(i).Visible = False

Timer2.Enabled = False

End If

End Sub

96

1.11 Tic Tac Toe

Tic Tac Toe is a popular game which you can play anytime and

anywhere if you have a piece of paper and a pen, or you could draw

it on sand or any surface. Now, let us program it in Visual Basic 6

so that you can play the game virtually.

To design the interface, first you need to draw four black straight

lines on the form using the line control. Next, insert an image

control then use copy and paste method to create nine image

controls, Image1 (0) to Image1 (8) and arrange them in the

following order:

Image1 (6) Image1 (7) Image1 (8)

Image1 (3) Image1(4) Image1(5)

Image1 (0) Image1 (1) Image1 (2)

In addition, you need to insert eight straight lines in red color that

would cross out three crosses or three circles if they are aligned in a

straight-line side by side, as shown in the design interface. You

need to make these lines invisible at start-up and make one of the

lines appear whenever the above condition is fulfilled.

Finally, insert two pictures, one in the shape of a circle and the other

one is in the shape of a cross to represent player 1 and player 2

respectively. The design UI is shown in Figure 1.13

97

Figure 1.13

Now you need to write the code to make the game works. To check

whether a position on the board is occupied or empty, you can

create two arrays, cross(8) and ball(8) (you need to use ball instead

of circle because circle is an internal function of VB) and declare

them as Boolean. If cross(n)=true, it means position n is occupied

by the player’s piece which is a cross. On the other hand, cross

(n)=false means position n is not occupied by a cross. It is the same

for the ball(n) array. The value of n is the index of an image control.

You need to create a subroutine check_position to check the

position of the player’s piece. The code is as follows:

Sub check_position()

For m = 0 To 8

If Image1(m).Picture = Image2.Picture Then

ball(m) = True

Else: ball(m) = False

End If

98

If Image1(m).Picture = Image3.Picture Then

cross(m) = True

Else

cross(m) = False

 End If

 Next

End Sub

Another important subroutine you need to create is check_status .

This subroutine will check whether three similar shapes have

appeared. Part of the subroutine is as follows:

Sub check_status()

If ball(0) = True And ball(1) = True And ball(2) = True Then

Line10.Visible = True

Player1_WinMsg

ElseIf ball(3) = True And ball(4) = True And ball(5) = True Then

Line9.Visible = True

Player1_WinMsg

ElseIf cross(0) = True And cross(1) = True And cross(2) = True Then

Line10.Visible = True

Player2_WinMsg

ElseIf cross(3) = True And cross(4) = True And cross(5) = True Then

Line9.Visible = True

Player2_WinMsg

End Sub

99

Both subroutines Player1_WinMsg and Player2_WinMsg are to

display winning messages “Player1 win!” and “Player2 Win!”

respectively.

The Code

Dim cross(8) As Boolean

Dim ball(8) As Boolean

Dim n, m As Integer

Dim player As Integer

'To check whether three similar images align in one straight line side

by side or not

Sub check_status()

If ball(0) = True And ball(1) = True And ball(2) = True Then

Line10.Visible = True

Player1_WinMsg

ElseIf ball(3) = True And ball(4) = True And ball(5) = True Then

Line9.Visible = True

Player1_WinMsg

ElseIf ball(6) = True And ball(7) = True And ball(8) = True Then

Line8.Visible = True

Player1_WinMsg

ElseIf ball(0) = True And ball(3) = True And ball(6) = True Then

Line5.Visible = True

Player1_WinMsg

ElseIf ball(1) = True And ball(4) = True And ball(7) = True Then

Line6.Visible = True

Player1_WinMsg

100

ElseIf ball(2) = True And ball(5) = True And ball(8) = True Then

Line7.Visible = True

Player1_WinMsg

ElseIf ball(0) = True And ball(4) = True And ball(8) = True Then

Line12.Visible = True

Player1_WinMsg

ElseIf ball(2) = True And ball(4) = True And ball(6) = True Then

Line11.Visible = True

Player1_WinMsg

ElseIf cross(0) = True And cross(1) = True And cross(2) = True Then

Line10.Visible = True

Player2_WinMsg

ElseIf cross(3) = True And cross(4) = True And cross(5) = True Then

Line9.Visible = True

Player2_WinMsg

ElseIf cross(6) = True And cross(7) = True And cross(8) = True Then

Line8.Visible = True

Player2_WinMsg

ElseIf cross(0) = True And cross(3) = True And cross(6) = True Then

Line5.Visible = True

Player2_WinMsg

ElseIf cross(1) = True And cross(4) = True And cross(7) = True Then

Line6.Visible = True

Player2_WinMsg

ElseIf cross(2) = True And cross(5) = True And cross(8) = True Then

Line7.Visible = True

101

Player2_WinMsg

ElseIf cross(0) = True And cross(4) = True And cross(8) = True Then

Line12.Visible = True

Player2_WinMsg

ElseIf cross(2) = True And cross(4) = True And cross(6) = True Then

Line11.Visible = True

Player2_WinMsg

End If

End Sub

‘ To check the image has occupied a square or not

Sub check_position()

For m = 0 To 8

If Image1(m).Picture = Image2.Picture Then

ball(m) = True

Else: ball(m) = False

End If

If Image1(m).Picture = Image3.Picture Then

cross(m) = True

Else

cross(m) = False

 End If

 Next

End Sub

Private Sub Image1_Click(Index As Integer)

102

‘To make images (cross or circle) appear on a certain position of the

board

check_position

If player = 1 And cross(Index) = False And ball(Index) = False Then

Image1(Index).Picture = Image2.Picture

End If

If player = 2 And cross(Index) = False And ball(Index) = False Then

Image1(Index).Picture = Image3.Picture

End If

check_position

check_status

‘To display message for a tie game (if no line visible)

n = n + 1

If n = 9 And Line5.Visible = False And _

Line6.Visible = False And Line7.Visible = False And _

Line8.Visible = False And Line9.Visible = False And _

Line10.Visible = False And Line11.Visible = False And Line12.Visible =

False Then

MsgBox ("Tie!")

newgame

End If

End Sub

Private Sub Image2_Click()

player = 1

End Sub

103

Private Sub Image3_Click()

player = 2

End Sub

Private Sub mnuNew_Click()

newgame

End Sub

Sub Player1_WinMsg()

MsgBox ("Player1 win!")

newgame2

End Sub

Sub Player2_WinMsg()

MsgBox ("Player2 win!")

newgame2

End Sub

Sub newgame()

n = 0

For m = 0 To 8

Image1(m).Picture = LoadPicture("")

Next

Line5.Visible = False

Line6.Visible = False

Line7.Visible = False

Line8.Visible = False

Line9.Visible = False

104

Line10.Visible = False

Line11.Visible = False

Line12.Visible = False

End Sub

Sub newgame2()

n = -1

For m = 0 To 8

Image1(m).Picture = LoadPicture("")

Next

Line5.Visible = False

Line6.Visible = False

Line7.Visible = False

Line8.Visible = False

Line9.Visible = False

Line10.Visible = False

Line11.Visible = False

Line12.Visible = False

End Sub

The Runtime Interface is shown in Figure 1.14.

105

Figure 1.14

106

1.12 Time Bomb

This program simulates a time bomb which is ticking away and will

explode within 60 seconds. To defuse the bomb, the user needs to

enter the correct password otherwise the bomb will explode. The

interface is shown in Figure 1.15

Figure 1.15

To make the program simpler, the user only needs to key-in a three-

digit password which is fixed by the programmer using the

declaration as follows:

 Const pw As Integer = 398

107

You may want to let the program creates a random password at run

time using Rnd function, as follows:

Dim pw as Interger

pw=Int(Rnd(400))

To design an attractive interface, you can use the image of a bomb

and an image of an exploding bomb. Make the exploding bomb

image invisible at startup and make it visible only if the user fails to

defuse the bomb. You also need to insert two command buttons,

label one of them as Confirm and the other one as Reset. Besides,

insert three text boxes to be used as the password panel. Insert a

timer control and program it so that it can start the countdown. You

can set the timer's interval to 1000 so that each countdown is one

second, or you can set a shorter interval.

You can also insert a Microsoft Multimedia Control to play the

explosion sound. Note that the Multimedia Control is not inlcuded

in the default Toolbox; you need to add it from the component. To

do that, go to the menu and click project, select components from

the drop-down menu. After choosing Microsoft Multimedia

Control 6.0 from the list of available controls, the multimedia

control will be added to Toolbox . To use the Microsoft Multimedia

Control, drag the control into the form.

The Code

Private Sub Timer1_Timer ()

'To display countdown time, when it is equal to 0, it sets off the

destruction procedure

countdown = 60 - x

If countdown <= 60 And countdown > -1 Then

Lbl_Timer.Caption = Str$(countdown)

x = x + 1

ElseIf countdown < 0 Then

108

Timer1.Enabled = False

destruction

End If

End Sub

 MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = "WaveAudio"

MMControl1.FileName = "MMControl1.Notify = False"

MMControl1.Wait = True

MMControl1.Shareable = False

MMControl1.DeviceType = "WaveAudio"

MMControl1.FileName = "C:\ My Documents\VB

program\audio\bomb.wav"

MMControl1.Command = "Open"

MMControl1.Command = "Play"

End Sub

109

1.13 Lucky Draw

This is a program that simulates a lucky draw. This program

consists of a 3x3 matrix comprising nine command buttons in a grid.

You must define the nine command buttons as an array of controls,

so that you can differentiate them by their indices. One of the

buttons contains a prize, when the user clicks on it; it displays the

word "prize" on the caption. If the user does not strike the prize, the

word "The Prize is here!” will appear on the command button that

contains the prize.

You can use a randomize process and the indices of the command

buttons to create the chance events. Random integers from 1 to 9

can be created using the statement n=Int(Rnd*9) where Int is

function that converts numbers to integers and Rnd is a method that

generates random numbers between 0 and 1. When the user clicks a

command button, a random number between 0 and 9 is generated

and if this number corresponds to the index of the command button,

it will show the word "Prize" on caption of the clicked command

button , otherwise, it shows the words "The Prize is here!" on the

command button with an index that corresponds to the generated

number. The Interface is shown in Figure 1.16.

110

Figure 1.16

The Code

Private Sub Command1_Click(Index As Integer)

 Dim n As Integer

 For n = 0 To 8

 Command1(n).Caption = ""

 Next

 n = Int(Rnd * 9)

 If Index = n Then

 Command1(n).Caption = "Prize"

 Else: Command1(n).Caption = "The Prize is here"

 End If

End Sub

111

1.14 Boggle

Boggle is a type of words puzzle game where the players can form

as many words as possible from the characters displayed on a nxn

square. Words can be formed in many ways, from left to right, from

right to left, top to bottom, bottom to top, diagonal, zigzag manner

and more.

In this example, we have designed a 5x5 boggle. To design the

Interface, insert twenty labels on the Form1. As we copy and paste

each label, VB6 automatically create an array comprising Label1(0)

This is only a boggle board generator, so the players must write the

words on a piece of paper.

Each time we press the shake button, a different set of characters

will appear. To achieve this, we use the chr() function and the Rnd

function to randomly generate the characters.

Alphabet A to Z correspond to Chr(65) to chr(90), therefore we

need to generate random numbers between 65 to 90. The formula to

generate random numbers between two numbers is:

m = Int((MaxValue - MinValue + 1) * Rnd) + MinValue

Therefore, the formula to generate random numbers between 65 and

90 is RndNum=Int(26)+65, which means we can generate random

alphabet using chr(m) in a For Next Loop.

The Code

Private Sub Cmd_Shake()

Dim i , m as Integer

For i = 0 To 24

 m = Int(26 * Rnd()) + 65

112

 Label1(i).Caption = char(m)

Next

End Sub

The Interface is shown in Figure 1.17

Figure 1.17

113

2. Educational Programs
2.1 Kid's Math

This is a simple arithmetic educational game for children. The child

who attempts the test can choose three different levels and perform

three different arithmetic calculations. The performance can be

evaluated by three measurements namely total questions attempted,

total correct answers and score which is the percentage of right

answers. The Interface is shown in Figure 2.1.

114

Figure 2.1

In this program, you need to add the following controls:

• Three option buttons

• Three text boxes

• A few labels

• Two images

115

The procedure to choose three different arithmetic calculations is

Private Sub Option1_Click(Index As Integer)

Select Case Index

Case 0

Label4.Caption = "+"

Action = "Plus"

Case 1

Label4.Caption = "-"

Action = "Minus"

Case 2

Label4.Caption = "x"

Action = "Multiply"

End Select

End Sub

The option buttons are grouped together as a control array and can

be identified by their indices. Using the Select Case…End Select

statements, the caption of Label4 which displays the operators will

change according to the selection. In addition, the variable Action

will be assigned different values namely “Plus”, “Minus” and

“Multiply”. These values will be passed to the OK procedure and

appropriate calculations will be performed.

A menu item “Level” for the user to choose the levels is added

using the menu editor. To start the menu editor, you must click on

the tools item on the menu bar. At the menu editor, you key in the

word “Level” in the caption box and its name “level” (this can be

any appropriate name) in the Name box. This is the first level menu

item. To type in the second menu items, you need to click on the

Next button and the right arrow key. Here you key in the words

116

Beginner, Intermediate and Advanced. The ampersand sign ‘&’ is

used in front of all the captions (it can be in any position) so that the

user can use the shortcut key to access the items. For example, to

access the Level item, the user can press Alt+L.

You will notice that all the menu items will appear in the code

window and you can write the event procedure for each of them.

The event procedure for each of the second level menu items is

quite simple. It simply assigns a value to the variable n, which is

n=1 for beginner, n=2 for intermediate and n=3 for advanced.

The procedure to randomize the process of displaying different

numbers after each click of the command button “Start” or “Next”

(The Start button changes to Next after the first Click) is shown

below. The select Case …..End Select statements allow the

generation of numbers for the three different levels.

Select Case n

Case 1

num1 = Int(Rnd * 10)

num2 = Int(Rnd * 10)

Case 2

num1 = Int(Rnd * 90) + 10

num2 = Int(Rnd * 90) + 10

Case 3

num1 = Int(Rnd * 900) + 100

num2 = Int(Rnd * 900) + 100

End Select

117

Figure 2.2

There are some minor things to be considered before the actual

calculation is done. First, for subtraction, you need to make sure

that the value of the first number is more than the second number as

this is arithmetic for kids. This is taken care of using the following

statement:

Case "Minus"

118

If num1 > num2 Then

number1.Caption = num1

number2.Caption = num2

Else

number1.Caption = num2

number2.Caption = num1

End If

The above statements ensure that when the second number is larger

than the first number, the second number will appear in the first text

box and the first number will appear in the second text box.

Secondly, to make sure that the multiplication is not too

complicated, the second number will be restricted to values between

0 and 10. This can be achieved using the Right function as shown in

the following statements:

Case "Multiply"

number1.Caption = num1

number2.Caption = Right(num2, 1)

The actual calculation is performed under the OK procedure or the

KeyPress procedure so that the user has a choice to click the OK

button or press the enter key to perform the calculation. The overall

program is shown below:

The Code

Dim num1 As Integer

Dim num2 As Integer

Dim intNumber As Integer

Dim totalQ As Integer

Dim n As Integer

119

Dim Action As String

Dim answer As Integer

Dim done As Boolean

Dim score As Integer

Private Sub beginner_Click()

n = 1

End Sub

Private Sub Inter_Click()

n = 2

End Sub

Private Sub advance_Click()

n = 3

End Sub

Private Sub Command3_Click ()

‘To calculate the score in percentage

Label10.Caption = Format ((intNumber / totalQ), "Percent")

End Sub

Private Sub Command4_Click()

total.Caption = ""

Label8.Caption = ""

intNumber = 0

totalQ = 0

Label10.Caption = ""

Command1.Caption = "Start"

120

End Sub

Private Sub Form_Load()

 n=1

Option1(0).Value = True

Label4.Caption = "+"

Image1.Visible = False

Image2.Visible = False

Label6.Visible = False

Label5.Visible = False

End Sub

Private Sub Option1_Click(Index As Integer)

Select Case Index

Case 0

Label4.Caption = "+"

Action = "Plus"

Case 1

Label4.Caption = "-"

Action = "Minus"

Case 2

Label4.Caption = "x"

Action = "Multiply"

End Select

End Sub

Private Sub Text3_keypress(keyAscii As Integer)

121

Select Case Action

Case "Plus"

answer = Val(number1.Caption) + Val(number2.Caption)

Case "Minus"

answer = Val(number1.Caption) - Val(number2.Caption)

Case "Multiply"

answer = Val(number1.Caption) * Val(number2.Caption)

End Select

‘To response to user’s pressing the Enter key

If (keyAscii = 13) And answer = Val(Text3.Text) Then

Image1.Visible = True

Image2.Visible = False

Label5.Visible = True

Label6.Visible = False

If done = True Then

intNumber = intNumber + 1

total.Caption = Str(intNumber)

End If

Text3.Enabled = False

ElseIf (keyAscii = 13) And answer <> Val(Text3.Text) Then

Image1.Visible = False

Image2.Visible = True

Label5.Visible = False

Label6.Visible = True

Text3.Enabled = False

End If

122

End Sub

Private Sub Command1_Click()

Image1.Visible = False

Image2.Visible = False

Label6.Visible = False

Label5.Visible = False

done = True

Text3.Enabled = True

Text3.Text = ""

x = x + 1

If x > 0 Then

Command1.Caption = "Next"

End If

Randomize Timer

Select Case n

Case 1

num1 = Int(Rnd * 10)

num2 = Int(Rnd * 10)

Case 2

num1 = Int(Rnd * 90) + 10

num2 = Int(Rnd * 90) + 10

Case 3

num1 = Int(Rnd * 900) + 100

num2 = Int(Rnd * 900) + 100

End Select

123

Select Case Action

Case "Plus"

number1.Caption = num1

number2.Caption = num2

Case "Minus"

If num1 > num2 Then

number1.Caption = num1

number2.Caption = num2

Else

number1.Caption = num2

number2.Caption = num1

End If

Case "Multiply"

number1.Caption = num1

number2.Caption = Right(num2, 1)

End Select

Text3.SetFocus

totalQ = totalQ + 1

Label8.Caption = Str(totalQ)

End Sub

Private Sub OK_Click()

Select Case Action

Case "Plus"

answer = Val(number1.Caption) + Val(number2.Caption)

124

Case "Minus"

answer = Val(number1.Caption) - Val(number2.Caption)

Case "Multiply"

answer = Val(number1.Caption) * Val(number2.Caption)

End Select

If Val(Text3.Text) = answer Then

Image1.Visible = True

Image2.Visible = False

Label5.Visible = True

Label6.Visible = False

If done = True Then

intNumber = intNumber + 1

total.Caption = Str(intNumber)

End If

Else

Image1.Visible = False

Image2.Visible = True

Label5.Visible = False

Label6.Visible = True

End If

Text3.Enabled = False

done = False

End Sub

125

2.2 Pythagorean Theorem

This a program that can solve geometric problems related to

Pythagorean Theorem. We supposed everybody is already familiar

with the above Theorem. However, some of you may have forgotten

the theorem therefore let me explain the theorem here. By referring

to a right-angled triangle ABC, if the sides are AB, AC and BC

respectively, where BC is the hypotenuse, then AB, AC and BC are

connected by the formula AB2+AC2=BC2

Using the above formula, you can calculate the third sides if the

lengths of any two sides are known. For example, if AB=4 and

AC=3 then BC=5. You can design the VB program for the user to

input any two sides and the program is able to calculate the third

side automatically. The third side BC can be found by finding the

square root of AB2+AC2. In visual basic, the syntax is

BC= Sqr(AB ^ 2 + AC ^ 2)

You can also use the function Round to let the program round the

value to two decimal places using the syntax Round (BC, 2).

The Interface is shown in Figure 2.3

Figure 2.3

126

The Code

Private Sub Command1_Click()

Dim AB, AC, BC As Single

AB = Val(Txt_AB.Text)

AC = Val(Txt_AC.Text)

BC = Val(Txt_BC.Text)

If AB <> 0 And AC <> 0 Then

BC = Sqr(AB ^ 2 + AC ^ 2)

Txt_BC.Text = Round(BC, 2)

ElseIf AB <> 0 And BC <> 0 Then

AC = Sqr(BC ^ 2 - AB ^ 2)

Txt_AC.Text = Round(AC, 2)

ElseIf AC <> 0 And BC <> 0 Then

AB = Sqr(BC ^ 2 - AC ^ 2)

Txt_AB.Text = Round(AB, 2)

End If

End Sub

127

2.3 Factors Finder

This is a program that can find all the factors of a number entered

by the user and displays them in a list box. You can use the simple

logic that a number is divisible by all its factors. However, you need

to tell Visual Basic how to identify factors from non-factors. To do

this, you can make use of the fact that the remainder after a number

is divided by its factor is zero. In Visual Basic, you can use the

MOD operator, which compute the value of the remainder after a

number is divided by an integer. The format is N Mod x.

With these logics in mind, you can use a For....Next Loop to

evaluate all the remainders for all the divisors of N smaller than N.

If the remainder is zero, then the divisor x (factor of x) is added to

the list box.

Figure 2.4

128

The code

Private Sub Command1_Click()

Dim N, x As Integer

N = Val(Text1.Text)

For x = 2 To N – 1

If N Mod x = 0 Then

List1.AddItem (x)

End If

Next

List1.AddItem (N)

End Sub

129

2.4 Prime Number Tester

This program can test whether a number is a prime number or not.

A prime number is a number that cannot be divided by other

numbers other than by itself. Examples are 2, 3, 5, 7, 11, 13, 17, 19,

23, 29, 31, 37 and more.

In this program, you can use the Select Case End Select

statement to determine whether a number entered by a user is a

prime number or not. For case 1, all numbers that are less than 2

are not prime numbers. In Case 2, if the number is 2, it is a prime

number. In the final case, if the number N is more than 2, you need

to divide this number by all the numbers from 3,4,5,6,........up to N-

1, if it can be divided by any of these numbers, it is not a prime

number, otherwise it is a prime number. To control the program

flow, you can use the Do...Loop While statement. Besides, you

need to use tag="Not Prime' to identify the number that is not

prime, so that when the routine exits the loop, the label will display

the correct answer. The Interface is shown in Figure 2.5.

Figure 2.5

130

The Code

Private Sub Command1_Click()

Dim N, D As Single

Dim tag As String

N = Val(TxtNumber.Text)

Select Case N

Case Is < 2

Lbl_Answer.Caption = "It is not a prime number"

Case Is = 2

Lbl_Answer.Caption = "It is a prime number"

Case Is > 2

D = 2

Do

If N / D = Int(N / D) Then

Lbl_Answer.Caption = "It is not a prime number"

tag = "Not Prime"

Exit Do

End If

D = D + 1

Loop While D <= N - 1

If tag <> "Not Prime" Then

Lbl_Answer.Caption = "It is a prime number"

End If

End Select

End Sub

131

2.5 Geometric Progression

This is a program that generates a geometric progression and

displays the results in a list box. Geometric progression is a

sequence of numbers where each subsequent number is found by

multiplying the previous number by a fixed number which is called

common ratio. The common ratio can be negative, an integer, a

fraction, and any number but it must not be a zero.

The general formula to find the nth term of the geometric

progression is

 arn-1

Where a is the first number and r is the common ratio.

In visual basic, you can employ the Do.... Loop Until statement to

generate the numbers in a geometric progression. In this program,

you need to insert three text boxes for the user to enter the first

number, the common ratio, and the number of terms. You also need

to insert a list box to list the numbers. Besides that, a command

button is need for the user to generate the numbers in the geometric

progression.

To add the numbers to the list box, use the AddItem method.

The syntax is List1.AddItem n, where n can be any variable.

The Code

Private Sub cmd_compute_Click()

Dim x, n, num As Integer

Dim r As Single

x = Txt_FirstNum.Text

r = Txt_CR

num = Txt_Terms.Text

132

List1.AddItem "n" & vbTab & "x"

List1.AddItem "___________"

n = 1

Do

x = x * r

List1.AddItem n & vbTab & x

n = n + 1

Loop Until n = num + 1

End Sub

The Interface

Figure 2.6

133

2.6 Maximum Number Calculator

This program allows the user enters three hidden numbers and it

can calculate the maximum number among the three numbers. For

the password user type in hidden mode, you have to set the

PasswordChar property to alphanumeric symbols such as *.

Now, you can create a function called calMax that consists

of three arguments x, y, z. You also need to write a procedure to call

this function. This procedure employs the If Then

ElseIf statements and the conditional operators to determine the

maximum number. The function Str is used to convert a numeric to

string.

The Code

Function calMax(x, y, z As Variant)

If x > y And x > z Then

calMax = Str(x)

ElseIf y > x And y > z Then

calMax = Str(y)

ElseIf z > x And z > y Then

calMax = Str(z)

End If

End Function

Private Sub Command1_Click()

Dim a, b, c

a = Val(Txt_Num1.Text)

b = Val(Txt_Num2.Text)

c = Val(Txt_Num3.Text)

Lbl_Display.Caption = calMax(a, b, c)

134

End Sub

The Interface is shown in Figure 2.7

Figure 2.7

135

2.7 Quadratic Equation Solver
Quadratic equation is a straightforward high school mathematics

problem. The quadratic equation solver was programmed to

determine the number of roots the equation has as well as to

compute the roots. It uses the determinant b2 -4ac to solve the

problems. If b2 -4ac>0, then it has two roots and if b2 -4ac=0, then it

has one root, else it has no root. To obtain the roots, the program uses

the standard quadratic formula as follows:

2a

4ac2b
±-b=X

−

The Code

Private Sub Form_Load()

Dim a, b, c, det As Integer

Dim root1, root2 As Single

Dim numroot As Integer

End Sub

Private Sub new_Click()

' To set all values to zero

Coeff_a.Text = ""

Coeff_b.Text = ""

Coeff_c.Text = ""

Answers.Caption = ""

txt_root1.Visible = False

txt_root2.Visible = False

txt_root1.Text = ""

txt_root2.Text = ""

Lbl_and.Visible = False

Lbl_numroot.Caption = ""

End Sub

136

Private Sub Solve_Click()

a = Val(Coeff_a.Text)

b = Val(Coeff_b.Text)

c = Val(Coeff_c.Text)

'To compute the value of the determinant

det = (b ^ 2) - (4 * a * c)

If det > 0 Then

Lbl_numroot.Caption = 2

root1 = (-b + Sqr(det)) / (2 * a)

root2 = (-b - Sqr(det)) / (2 * a)

Answers.Caption = "The roots are "

Lbl_and.Visible = True

txt_root1.Visible = True

txt_root2.Visible = True

txt_root1.Text = Round(root1, 4)

txt_root2.Text = Round(root2, 4)

ElseIf det = 0 Then

root1 = (-b) / 2 * a

Lbl_numroot.Caption = 1

Answers.Caption = "The root is "

txt_root1.Visible = True

txt_root1.Text = root1

Else

Lbl_numroot.Caption = 0

Answers.Caption = "There is no root "

End If

End Sub

The Interface is shown in Figure 2.8.

137

Figure 2.8

138

2.8 Quadratic Graph Plotter

This is a program that can plot graphs for quadratic functions. The

quadratic equation is f(x) = ax2+bx+c, where a, b and c are

constants. This program is a useful tool for high school teachers to

teach mathematics. This program employs a picture box as the plot

area and three text boxes to obtain the values of the coefficients a, b,

c of the quadratic equation from the user. You need to modify the

scale factor in the property's windows of the picture box. You can

use a scale of 0.5 cm to represent 1 unit.

Besides, you need to make some transformation as the coordinates

in VB start from top left, but it is better to transform the origin to

the center of the picture box. You can use the Pset method to draw

the graph using a small increment. Pset is a method that draws a dot

on the screen, the syntax is

Pset(x, y), color

Where (x, y) is the coordinates of the dot and colour is the colour of

the dot. The default color is black. Using the For Next loop together

with Pset, the program can draw a line on the screen.

The Code

Private Sub cmd_draw_Click()

Dim a, b, c As Integer

Dim w, v As Single

a = Val(txt_a.Text)

b = Val(txt_b.Text)

c = Val(txt_c.Text)

'Using a scale of 0.5 cm to represent i unit to draw the graph

For w = 0 To 10 Step 0.001

v = a * (5 - w) ^ 2 - b * (5 - w) + c

pic_graph.PSet (w, 5 - v)

Next w

End Sub

139

Private Sub Command1_Click()

pic_graph.Cls

txt_a.Text = ""

txt_b.Text = ""

txt_c.Text = ""

End Sub

The Interface is shown in Figure 2.9.

Figure 2.9

140

2.9 Simultaneous Equations Solvers
2.9(a) Linear Simultaneous Equations

Simultaneous equations are equations that involve two or more

unknown variables. There must be as many equations as the number

of unknown variables for us to solve the problem. In this example,

we shall only solve linear simultaneous equations. Linear

simultaneous equations take the following forms:

ax+by= m

cx+by = n

Simultaneous equations can be solved by the substitution or

elimination methods. In this program, you can use the substitution

method. By using the method, you can derive the following

formulas:

x = (b * n - d * m) / (b * c - a * d)

y = (a * n - c * m) / (a * d - b * c)

The Code

Private Sub Solve_Click()

Dim a, b, c, d, m, n As Integer

Dim x, y As Double

a = Val(Txt_a.Text)

b = Val(Txt_b.Text)

m = Val(Txt_m.Text)

c = Val(Txt_c.Text)

d = Val(Txt_d.Text)

n = Val(Txt_n.Text)

x = (b * n - d * m) / (b * c - a * d)

y = (a * n - c * m) / (a * d - b * c)

Lbl_x.Caption = Round(x, 2)

Lbl_y.Caption = Round(y, 2) ‘using round to limit decimal places

End Sub

141

 ’To get new equations

Private Sub New_Click()

Txt_a.Text = ""

Txt_b.Text = ""

Txt_m.Text = ""

Txt_c.Text = ""

Txt_d.Text = ""

Txt_n.Text = ""

Lbl_x.Caption = ""

Lbl_y.Caption = ""

End Sub

The Interface

Figure 2.10

142

2.9(b) Mixed Simultaneous Equations

In this example, we will show you how to design a program that can

solve mixed simultaneous equations, that is, one linear equation and

one quadratic equation. Mixed simultaneous equations take the

following forms:

ax+by=m

cx2+dy2=n

Simultaneous equations can normally be solved by the substitution

or elimination methods. In this program, you can use the

substitution method. So, you can obtain the following formulas:

x1 = (m a d + Sqr(m 2 a 2 d 2 - (b 2 c + a 2 d) (d m 2 - b 2 n))) / (b 2 c +

a 2 d)

x2 = (m a d +-Sqr(m 2 a 2 d 2 - (b 2 c + a 2 d) (d m 2 - b 2 n))) / (b 2 c +

a 2 d)

y1 = (m - a x1) / b

y2 = (m - a x2) / b

The Code

Private Sub Command1_Click()

Dim a, b, c, d, m, n As Integer

Dim x1, x2, y1, y2 As Double

a = Val(Txt_a.Text)

b = Val(Txt_b.Text)

m = Val(Txt_m.Text)

c = Val(Txt_c.Text)

d = Val(Txt_d.Text)

n = Val(Txt_n.Text)

x1 = (m * a * d + Sqr(m ^ 2 * a ^ 2 * d ^ 2 - (b ^ 2 * c + a ^ 2 * d) * _

143

(d * m ^ 2 - b ^ 2 * n))) / (b ^ 2 * c + a ^ 2 * d)

x2 = (m * a * d - Sqr(m ^ 2 * a ^ 2 * d ^ 2 - (b ^ 2 * c + a ^ 2 * d) *_

 (d * m ^ 2 - b ^ 2 * n))) / (b ^ 2 * c + a ^ 2 * d)

y1 = (m - a * x1) / b

y2 = (m - a * x2) / b

Lbl_x1.Caption = Round(x1, 2)

Lbl_y1.Caption = Round(y1, 2)

Lbl_x2.Caption = Round(x2, 2)

Lbl_y2.Caption = Round(y2, 2)

End Sub

The Interface

Figure 2.11

144

2.10. The Sine Rule

The Sine Rule can be used to calculate the remaining sides of a

triangle when two angles and a side are known. It can also be used

when two sides and one of the non-enclosed angles are known. In

some cases, the formula may produce two possible values for the

enclosed angle, leading to an ambiguous case. The sine rule is

shown below.

By referring to the figure above, the formula of the sine rule is:

For example, if the user enters angle A and angle B as 60 and 30

respectively, and the length a=4, then b=6.93. You need to convert

the degree to radian by multiplying the angle by π (=3.14159) and

divide it by 180. To get more accurate value of π using the formula

π=4Atn (1) where Atn is Arctangent, as Tan(π/4) =1.

145

The Code

Private Sub Cmd_Cal_Click()

Dim A, B, X, Y, m, l As Single

Dim Pi As Single

Pi = 4 * Atn(1)

A = Val(TextA.Text)

B = Val(TextB.Text)

m = Val(Text_SideA.Text)

'To convert the angle to radian

X = (Pi / 180) * A

Y = (Pi / 180) * B

l = (m * Sin(Y)) / Sin(X)

'To correct the answer to two decimal places

Lbl_Answer.Caption = Str(Format(l, "0.00"))

End Sub

The Interface

146

Figure 2.12

147

2.11 Projectile

This is a program that can plot the path of a projectile, a basic

concept of missile launching. This path is determined by the

launching angle and speed. The formula is y=(Vsin a) t- 1/2(gt2)

and x=(Vcosa)t, where V=launching speed and a is the launching

angle, g is acceleration due to gravity(9.8 ms-2) while t is the flight

time.

In this program, you can use a picture box for drawing the parabolic

curve. The command Pset is used to plot the curve. Pset is a method

that draws a point on the screen. Using a looping procedure like the

Do … Loop will connect all the points into a line.

The Code

Private Sub cmd_Draw_Click()

Dim x, y, v, t, a As Single

v = Txt_Speed.Text

a = Txt_Angle.Text

Pic_Curve.Cls

Do

t = t + 0.01

y = v * Sin(a * 3.141592654 / 180) * t - 4.9 * (t ^ 2)

x = v * Cos(a * 3.141592654 / 180) * t

Pic_Curve.PSet (x, 120 - y)

If x > 120 Then

Exit Do

End If

Loop

End Sub

148

The Interface

Figure 2.13

149

2.12 Simple Harmonic Motion

Simple harmonic motion is the motion of a simple harmonic

oscillator. The motion is periodic, as it repeats itself at standard

intervals in a specific manner with constant amplitude. It is

characterized by its amplitude, its period which is the time for a

single oscillation, its frequency which is the number of cycles per

unit time, and its phase, which determines the starting point on the

sine wave. The period, and its inverse the frequency, are constants

determined by the overall system, while the amplitude and phase are

determined by the initial conditions (position and velocity) of that

system. (Wikipedia, 2008). The general equation describing simple

harmonic motion is

x=Acos(2pft+f), where x is the displacement, A is the amplitude of

oscillation, f is the frequency, t is the elapsed time, and f is the

phase of oscillation.

To create a simple model of simple harmonic motion in Visual

Basic, you can use the equation x=Acos(wt), and assign a value of

500 to A and a value of 50 to w. In this program, the circular

object which has been inserted into the form will oscillate from left

to right, reaching the maximum speed at the middle of the path.

In this program, you have to insert a shape and set it to be a circle in

the properties windows. Next, insert two command buttons and

change the captions to Start and Stop, respectively. Finally, insert a

timer and set its interval to be 100 and disabled it at start up. You

can use the move method to move the shape1 object whose path is

determined by the formula x = 500 * Cos (50 * t). When you run

the program, the object will move in an oscillating motion as shown

in Figure 2.14

150

The Code

Dim t As Integer

Private Sub cmd_Start_Click()

Timer1.Enabled = True

End Sub

Private Sub cmd_Stop_Click()

Timer1.Enabled = False

End Sub

Private Sub Timer1_Timer()

t = t + 1

x = 500 * Cos(50 * t)

Shape1.Move Shape1.Left + x

End Sub

The Interface is shown in Figure 2.14

Figure 2.14

151

3. Financial Programs

3.1 Amortization Calculator

Before we delve into the program code, you need to know some

basic financial concepts. The term loan amortization means the

computation of the amount of equal periodic payments necessary to

provide lender with a specific interest return and repay the loan

principal over a specified period. The loan amortization process

involves finding the future payments whose present value at the

loan interest rate equal the amount of initial principal borrowed.

Lenders use a loan amortization schedule to determine these

payment amounts and the allocation of each payment to interest and

principal.

The formula to calculate periodic payment is

 Payment=Initial Principal/PVIFAn

PVIFAn is known as present value interest factor for an annuity. The

formula to compute PVIFAn is

 PVIFAn =1/i - 1/i(1+i)n

Where n is the number of payments. Usually you can check up a

financial table for the value of PVIFAn and then calculate the

payments manually. You can also use a financial calculator to

compute the values. However, if you already know how to write

program in VB, why not create your very own financial calculator.

To calculate the payments for interest, you can multiply the initial

principal with the interest rate, and then use periodic payment to

minus payment for interest. To calculate the balance at the end of a

period, you can use the formula

End-of-year principal=Beginning-of-year principal - periodic

payment

152

In this program, you need to add four text boxes to accept the input

for initial principal value, number of payments, interest rate per

annum and amount of periodic payments. You also need to insert a

list box to display the amortization table.

The Code

Dim Num, n As Integer

Dim I, P, PVIFA, r, pmt, PI, PP As Double

Public Sub Cmd_Calculate_Click()

P = Txt_Principal.Text

Num = Txt_Num_payment.Text

r = Txt_Interest.Text

I = r / 100

PVIFA = 1 / I - 1 / (I * (1 + I) ^ Num)

pmt = P / PVIFA

Lbl_Amtpayment.Caption = Round(pmt, 2)

End Sub

Private Sub Cmd_Create_Click()

List_Amortization.AddItem "n" & vbTab & "Periodic" & vbTab & vbTab

& "Payment" & vbTab & vbTab & "Payment" & vbTab & vbTab &

"Balance"

List_Amortization.AddItem "" & vbTab & "Payment" & vbTab & vbTab

& "Interest" & vbTab & vbTab & "Principal"

List_Amortization.AddItem

"___"

Do

n = n + 1

PI = P * I

PP = pmt - PI

P = P - PP

List_Amortization.AddItem n & vbTab & Round(pmt, 2) & vbTab &

vbTab & Round(PI, 2) & vbTab & vbTab & Round(PP, 2) & vbTab &

153

vbTab & Round(P, 2)

If n = Num Then

Exit Do

End If

Loop

End Sub

The Interface is shown in Figure 3.1.

Figure 3.1

154

3.2 Depreciation Calculator

Depreciation means a reduction in the value of an asset with the

passage of time. Depreciation is computed based on the initial

purchase price or initial cost, number of years where depreciation is

calculated, salvage value at the end of the depreciation period, and

the asset's life span.

Depreciation is an important element in the management of a

company's assets. With proper and accurate calculation of

depreciation, a company can benefit from the tax advantage. In

Visual Basic, the syntax of the depreciation function is

DDB(Cost,Salvage,Life, Period)

Cost=Initial cost, Salvage=Salvage value, Life=Asset's life span

Period=Depreciation period

In this program, you need to add four text boxes to accept input for

initial cost, salvage value, asset's life, and period of depreciation.

Besides that, insert a label to display the amount of depreciation and

a command button to compute the depreciation.

The Code

Private Sub Command1_Click()

Dim Int_Cost, Sal_Value, Asset_Life, Deperiod, Depre_Amt As Double

Int_Cost = Val(Txt_Cost.Text)

Sal_Value = Val(Txt_Salvage.Text)

Asset_Life = Val(Txt_Life.Text)

Deperiod = Val(Txt_Period.Text)

Depre_Amt = DDB(Int_Cost, Sal_Value, Asset_Life, Deperiod)

Lbl_Dpre.Caption = Format(Depre_Amt, "$###,###,000.00")

End Sub

The Interface shown in Figure 3.2

155

Figure 3.2

156

3.3 Future Value Calculator

The concept of future value is related to time value of money. For

example, if you deposit your money in a bank as a savings account

or a fixed deposit account for a specific period of time, you will

earn a certain amount of interest based on the compound interest

computed periodically. This amount will be added to the principal if

you continue to keep the money in the bank. Interest for the

following period is now computed based on the initial principal plus

the interest (the amount which becomes your new principal).

Subsequent interests are computed in the same way.

For example, let us say you deposited $1000 in a bank and the bank

is paying you 5% compound interest annually. After the first year,

you will earn an interest of $1000x0.05=$50. Your new principal

will be

$1000+$1000x0.05=$1000(1+0.05) =$1000(1.05) =$1050.

After the second year, your new principal will be

$1000(1.05) x1.05=$1000(1.05)2 =$1102.50.

This new principal is called the future value.

Following the above calculation, the future value after n years will

be

FV = PV * (1 + i / 100) n

Where PV represents the present value, FV represents the future

value, is the interest rate and n is the number of periods (Normally

months or years).

157

The code

Public Function FV(PV As Variant, i As Variant, n As Variant) As Variant

'Formula to calculate Future Value(FV)

'PV denotes Present Value

FV = PV * (1 + i / 100) ^ n

End Function

Private Sub compute_Click()

'This procedure will calculate Future Value

Dim FutureVal As Currency

Dim PresentVal As Currency

Dim interest As Variant

Dim period As Variant

PresentVal = PV.Text

interest = rate.Text

period = years.Text

FutureVal = FV(PresentVal, interest, period)

Label5.Caption = Format(FutureVal, "currency")

End Sub

The Interface is shown in Figure 3.3

158

Figure 3.3

159

3.4 Investments Calculator

This program is basically the same as the Future Value Calculator in

the previous section, where you can use the formula FV = PV * (1 +

i / 100) n to calculate the future value. However, in this example,

we assume you have a target future value in mind, and you wish to

know how much money you need to invest to achieve the target

based on a certain interest. Though you still can employ the same

basic formula, this time you can use the Visual Basic 6 built-in

present value function, or PV.

The syntax of the PV function is

PV(Rate,Nper, Pmt,FV,Due)

Rate=Interest rate, Nper=The length of period (Usually number of

years)

Pmt=Periodic payment, FV=Future Value

*Due= 1 if payment due at beginning of a period and Due=0 if

payment due at the end of a period. In our example, you

can consider a single initial investment in order to earn a certain

amount of money in the future, so Pmt is set to 0, and payment due

is at the beginning of the period, so it is set at 0, the rest of the

values are obtained from the users.

The Code

Private Sub cmdCal_Click()

Dim F_Money, Int_Rate, Investment As Double

Dim numYear As Single

F_Money = Val(Txt_FV.Text)

Int_Rate = (Val(Txt_Rate.Text) / 100)

numYear = Val(Txt_Year.Text)

Investment = PV(Int_Rate, numYear, 0, F_Money, 1)

Lbl_PV.Caption = Format(-Investment, "$##,###,##0.00")

http://www.vbtutor.net/VB_Sample/FVCalculator.htm

160

End Sub

The Interface is as shown in Figure 3.5

Figure 3.5

161

3.5 Payback Period Calculator

Currently people seem to face a lot of difficulties to secure a loan or

have problem to pay back a loan. The subprime loan issues seem to

hit everyone hard. Still, we need to borrow money every now and

then to acquire an asset or to pay for education fees. So, naturally

we need to find out how long we can settle a loan for a certain

amount of monthly payment at a certain interest rate. It is not easy

to calculate such figure; fortunately, Visual Basic comes to the

rescue. There is built-in function in VB to calculate the

payback period is Nper and the syntax is

Nper(Rate,Pmt,PV,FV,Due)

Rate=Interest Rate

Pmt=Amount of Periodic Payment

PV=Loan taken

FV=Future Value (set to 0 if loan is settled)

Due=set to 1 if payment at the beginning of the period

 set to 0 if payment at the end of the period

The Code

Private Sub Command1_Click()

Dim payment, Loan, Int_Rate As Double

Dim Num_year As Single

payment = Val(Txt_Payment.Text)

Int_Rate = (Val(Txt_Rate.Text) / 100) / 12

Loan = Val(Txt_PV.Text)

Num_year = NPer(Int_Rate, payment, -Loan, 0, 0) / 12

Lbl_Period.Caption = Str(Int(Num_year))

End Sub

The Interface is as shown in Figure 3.6

162

Figure 3.6

163

4. Graphics Programs
4.1 Drawing Pad

You can create a virtual drawing program using Visual Basic 6.

You may call it drawing pad.

In this program, the user needs to fill in all the coordinates and

chooses a colour before he or she can proceed to draw the required

shape. If he or she forgets to fill in the coordinates or chooses a

colour, he or she will be prompted to do so.

To create the drawing pad, you need to insert a common dialog

control, a picture box, four text boxes, six command buttons and the

necessary labels. The function of the common dialog control is to

assist the users to choose colours. The text boxes are for the user to

enter the coordinates and the picture box is to display the pictures

drawn.

The syntax to draw a straight line is Line, and the syntax is as

follows:

Picture1.Line (x1, y1)-(x2, y2), color

Where picture1 is the picture box, (x1, y1) is the coordinates of the

starting point, (x2, y2) is the ending point and color understandably

is the color of the line.

The syntax to draw a non-solid rectangle is

Picture1.Line (x1, y1)-(x2, y2), color, B

The syntax to draw a solid rectangle is

Picture1.Line (x1, y1)-(x2, y2), color, BF

The syntax to draw a circle is

Picture1.Circle (x3, y3), r, color

164

 (x 3, y3) the centre of the circle, and r is the radius.

If you wish to draw a solid circle and fill it with the selected color,

then add two more lines to the above syntax:

Picture1.FillStyle = vbSolid

Picture1.FillColor = color

The syntax to clear the picture is

Picture1.Cls

The code

Private Sub cmd_Rectangle_Click()

x1 = Text1.Text

y1 = Text2.Text

x2 = Text3.Text

y2 = Text4.Text

Picture1.Line (x1, y1)-(x2, y2), color, B

End Sub

Private Sub cmd_Color_Click()

CommonDialog1.Flags = &H1&

CommonDialog1.ShowColor

color = CommonDialog1.color

End Sub

Private Sub cmd_Circle_Click()

On Error GoTo addvalues

x3 = Text5.Text

y3 = Text6.Text

r = Text7.Text

Picture1.FillStyle = vbSolid

Picture1.FillColor = color

Picture1.Circle (x3, y3), r, color

165

Exit Sub

addvalues:

MsgBox ("Please fill in the coordinates ,the radius and the color")

End Sub

Private Sub Command5_Click()

Picture1.Cls

End Sub

Private Sub cmd_SolidRect_Click()

x1 = Text1.Text

y1 = Text2.Text

x2 = Text3.Text

y2 = Text4.Text

Picture1.Line (x1, y1)-(x2, y2), color, BF

End Sub

The Interface is shown in Figure 4.1

166

Figure 4.1

167

4.2 Picture Viewer

This is a program that enables the user to browse, open and

chooses image files from the folders in his or her computer and

views them in a picture box. There are two ways to implement the

program. The first is to build the program from the ground up and

the second makes use of the common dialog box.

The first way is a little more complicated, but you can learn a great

deal of programming techniques. To create this program, you need

to insert a drive list box (DriveListBox) , a directory list box

(DirListBox), a file list box(FileListBox) and a combo box . The

drive list box is for the user to select a drive, the directory list box is

for the user to choose a folder and the file list box is display the files

in the selected folder. Besides that, the combo box allows the user

to select all graphics files or all files. You also need to insert a

picture box to display the image.

The code for First Method

Private Sub Combo1_Change()

'To list all graphics files or all files

If ListIndex = 0 Then

File1.Pattern = ("*.bmp;*.wmf;*.jpg;*.gif")

Else

Fiel1.Pattern = ("*.*")

End If

End Sub

Private Sub Dir1_Change() 'To choose drive

File1.Path = Dir1.Path

File1.Pattern = ("*.bmp;*.wmf;*.jpg;*.gif")

End Sub

Private Sub Drive1_Change()

Dir1.Path = Drive1.Drive

168

End Sub

Private Sub File1_Click()

'To select a file

If Combo1.ListIndex = 0 Then

File1.Pattern = ("*.bmp;*.wmf;*.jpg;*.gif")

Else

File1.Pattern = ("*.*")

End If

If Right(File1.Path, 1) <> "\" Then

filenam = File1.Path + "\" + File1.FileName

Else

filenam = File1.Path + File1.FileName

End If

End Sub

Private Sub show_Click()

'To show the selected graphics file

If Right(File1.Path, 1) <> "\" Then

filenam = File1.Path + "\" + File1.FileName

Else

filenam = File1.Path + File1.FileName

End If

Picture1.Picture = LoadPicture(filenam)

End Sub

The Code for Second Method

The second way is much easier to program, you only need to insert

an image control, a common dialog box and an icon that resembles

on opened file. You need to set the stretchable property of the image

control to true. The procedure to open the common dialog box to

169

browse the image files as well as to load the selected picture into

the image control is

CommonDialog1.Filter =

"Bitmaps(*.BMP)|*.BMP|Metafiles(*.WMF)|*.WMF|Jpeg

Files(*.jpg)|*.jpg|GIF Files(*.gif)|*.gif|Icon Files(*.ico)|*.ico|All

Files(*.*)|*.*"

CommonDialog1.ShowOpen

Picture1.Picture = LoadPicture(CommonDialog1.FileName)

The filter property of the common dialog box uses the format as

shown below

Bitmaps(*.BMP)|*.BMP

To specify the file type, and uses the pipeline | to separate different

file types.

Visual Basic supports most of the picture formats namely bmp, wmf,

jpg, gif, ico(icon) and cur(cursor) files.

The command CommonDialog1.ShowOpen is to open the common

dialog box and the command

 Picture1.Picture = LoadPicture (CommonDialog1.FileName)

is to load the selected picture file into the picture box.

The full code is as follows:

 Private Sub Image1_Click()

CommonDialog1.Filter =

"Bitmaps(*.BMP)|*.BMP|Metafiles(*.WMF)|*.WMF|Jpeg

Files(*.jpg)|*.jpg|GIF Files(*.gif)|*.gif|Icon Files(*.ico)|*.ico|All

Files(*.*)|*.*"

CommonDialog1.ShowOpen

170

image2.Picture = LoadPicture (CommonDialog1.FileName)

End Sub

The second way is much easier to program, you only need to insert

an image control, a common dialog box and an icon that resembles

on opened file. You need to set the stretchable property of the image

control to true. The procedure to open the common dialog box to

browse the image files as well as to load the selected picture into

the image control is

CommonDialog1.Filter =

"Bitmaps(*.BMP)|*.BMP|Metafiles(*.WMF)|*.WMF|Jpeg

Files(*.jpg)|*.jpg|GIF Files(*.gif)|*.gif|Icon Files(*.ico)|*.ico|All

Files(*.*)|*.*"

CommonDialog1.ShowOpen

Picture1.Picture = LoadPicture(CommonDialog1.FileName)

The filter property of the common dialog box uses the format as

follows:

Bitmaps(*.BMP)|*.BMP

to specify the file type and uses the pipeline | to separate different

file types.

Visual Basic supports most of the picture formats namely bmp, wmf,

jpg, gif, ico(icon) and cur(cursor) files. The

command CommonDialog1.ShowOpen is to open the common dialog

box and the command

 Picture1.Picture = LoadPicture (CommonDialog1.FileName)

is to load the selected picture file into the picture box.

 The full code is as follows:

 Private Sub Image1_Click()

171

CommonDialog1.Filter =

"Bitmaps(*.BMP)|*.BMP|Metafiles(*.WMF)|*.WMF|Jpeg _

Files(*.jpg)|*.jpg|GIF Files(*.gif)|*.gif|Icon Files(*.ico)|*.ico|All _

Files(*.*)|*.*"

CommonDialog1.ShowOpen

image2.Picture = LoadPicture (CommonDialog1.FileName)

End Sub

When the user clicks the opened file icon, the following dialog will

appear. The user then can select the file he or she wishes to view, as

shown in Figure 4.2.

Figure 4.2

172

The Runtime Interface is shown in Figure 4.3

Figure 4.3

173

5 Multimedia Programs

In Visual Basic, you can create various multimedia applications that

can play audio CD, various audio files including mp3, wav and midi

files; and different types of video files such as avi, mpeg files and

etc. To be able to play multimedia files or multimedia devices, you

have to insert the Microsoft Multimedia Control into your

applications that you are going to create.

However, Microsoft Multimedia Control is not included in the

default toolbox. Therefore, you need to add the Microsoft

Multimedia control from the components dialog box. To access the

components dialog box, press Ctrl+T. Select Microsoft

Multimedia control 6.0 from the components available in the

dialog box as shown in the Figure 5.1. and then press the OK button.

When you close the dialog box, you will notice that the Microsoft

Multimedia Control will be available in the toolbox and you can add

it to the form.

Figure 5.1

174

175

5.1 Creating a DVD Player

In this program, insert the Microsoft Multimedia Control and set its

properties to Visible to True as well as Play to Enabled. In addition,

insert five command buttons and name as well as label them as Play,

Next, Previous, Stop and Exit. Besides that, insert a label that can

be used to display the current track number of the song being played.

Lastly, enter the program codes.

The most important statement in this program is to set the Microsoft

Multimedia Control’s device type to CDAudio because it will

ensure audio CDs can be played.

 MMControl1.DeviceType = "CDAudio"

To display the track number of the current song being played, use

the following statement:

trackNum.Caption = MMControl1.Track

The Play, Next, Previous and Stop commands can be programmed

using the

MMControl1.Command = "Play", MMControl1.Command = "Next”,

MMControl1.Command = "Prev", and MMControl1.Command = "Stop"

statement.

Lastly, always ensure that the Microsoft Multimedia Control is

closed whenever the user closes the player. This can be achieved by

using the statement

MMControl1.Command = "Close"

Under Form1_Unload procedure.

176

The Code

Private Sub Form_Load ()

'To position the page at the center

Left = (Screen.Width - Width) \ 2

Top = (Screen.Height - Height) \ 2

End Sub

Private Sub Form_Activate ()

'Load the CDPlayer

MMControl1.Notify = False

MMControl1.Wait = True

MMControl1.DeviceType = "CDAudio"

MMControl1.Command = "Open"

End Sub

Private Sub MMControl1_StatusUpdate ()

'Update the track number

trackNum.Caption = MMControl1.Track

End Sub

Private Sub Next_Click ()

MMControl1.Command = "Next"

End Sub

Private Sub Play_Click ()

MMControl1.Command = "Play"

End Sub

Private Sub Previous_Click ()

177

MMControl1.Command = "Prev"

End Sub

Private Sub Stop_Click ()

MMControl1.Command = "Stop"

End Sub

Private Sub Exit_Click ()

MMControl1.Command = "Stop"

MMControl1.Command = "Close"

End

End Sub

Private Sub Form1_unload ()

‘Unload the CDPlayer

MMControl1.Command = "Close"

End Sub

The DVD Player Interface

Figure 5.2

178

5.2 A Smart Audio Player

In the preceding section, you have programmed a DVD player. Now,

by making some minor alterations, you can transform the DVD

player into an audio player. This player will be created in such a

way that it can search for sound files in your drives and play them.

In this project, you need to insert a ComboBox, a DriveListBox, a

DirListBox, a TextBox and a FileListBox into your form. I shall

briefly discuss the function of each of the above controls. Besides

that, you must also insert Microsoft Multimedia Control

(MMControl) in your form. You may make it visible or invisible. In

this program, I choose to make it invisible so that I can use the

command buttons created to control the player. The functions of the

various controls are explained below:

a) The ComboBox

Displays and enables the selection of different types of files. To add

items to the Combo Box, you can use the AddItem method. The

items here are the extensions of different audio files.

b) The DriveListBox

The DriveListBox allows the selection of different drives in your

computer.

c) The DirListBox

The DirListBox displays different directories that are available in

your computer.

d) The Textbox

The Textbox displays the selected files.

e) The FileListBox

179

The FileListBox displays files that are available in your computer.

Relevant codes must be written to coordinate all the above controls

so that the application can work properly. The program should flow

in the following logical steps:

Step 1: User chooses the type of files he wants to play.

Step2: User selects the drive that might contain the relevant audio

files.

Step 3: User looks into directories and subdirectories for the files

specified in step1. The files should be displayed in the FileListBox.

Step 4: User selects the files from the FileListBox and clicks the

Play button.

Step 5: User clicks on the Stop button to stop playing and the Exit

button to end the application.

To coordinate the DriveListBox and the DirListBox, you can use

the statement below, so that any change of the drives will be

reflected in the directory list box.

Dir1.Path = Drive1.Drive

To coordinate the FileListBox and the DirListBox, you can use the

statement below so that any change of the directories will be

reflected in the File List Box.

File1.Path = Dir1.Path

To select the target file, you can use the following statements where

File1.Path determines the path of the file and File1.FileName

determines the file name. The file name is then assigned to the

variable filename and displayed in the text box.

180

If Right (File1.Path, 1) <> "\" Then

filenam = File1.Path + "\" + File1.FileName

Else

filenam = File1.Path + File1.FileName

End If

Text1.Text = filenam

To select the file types, you can use the statement File1.Pattern =

("*.wav") to choose the wave audio files and the statement

File1.Pattern = ("*.mid") to choose the sequencer files.

To play the selected file, use the following procedure:

Private Sub play_Click ()

'To play WaveAudio file or Midi File

If Combo1.ListIndex = 0 Then

MMControl1.DeviceType = "WaveAudio"

ElseIf Combo1.ListIndex = 1 Then

MMControl1.DeviceType = "Sequencer"

End If

MMControl1.FileName = Text1.Text

MMControl1.Command = "Open"

MMControl1.Command = "Play"

End Sub

The statement MMControl1.DeviceType = "WaveAudio" enables

the Microsoft Multimedia Control to play Wave Audio files and the

statement MMControl1.DeviceType = "Sequencer" enables the

Microsoft Multimedia Control to play the midi files. In fact, the

Microsoft Multimedia Control can play many other types of

multimedia files, including Mpeg, Mp3 and Avi video files.

181

The statement MMControl1.FileName = Text1.Text plays the

multimedia file displayed in the Text1 textbox. The statement

MMControl1.Command = "Open" initiates the Microsoft

Multimedia Control and the statement MMControl1.Command =

"Play” plays the multimedia file. The statement

MMControl1.Command = "stop" stops the Microsoft Multimedia

Control from playing and finally the statement

MMControl1.Command = "Close” closes the Microsoft

Multimedia Control.

The Code

Private Sub Form_Load ()

'To center the Audioplayer

Left = (Screen.Width - Width) \ 2

Top = (Screen.Height - Height) \ 2

Combo1.Text = "*.wav"

Combo1.AddItem "*.wav"

Combo1.AddItem "*.mid"

Combo1.AddItem "All files"

End Sub

Private Sub Combo1_Change ()

‘To determine file type

If ListIndex = 0 Then

File1.Pattern = ("*.wav")

ElseIf ListIndex = 1 Then

File1.Pattern = ("*.mid")

Else

Fiel1.Pattern = ("*.*")

End If

End Sub

Private Sub Dir1_Change ()

182

'To change directories and subdirectories (or folders and subfolders)

File1.Path = Dir1.Path

If Combo1.ListIndex = 0 Then

File1.Pattern = ("*.wav")

ElseIf Combo1.ListIndex = 1 Then

File1.Pattern = ("*.mid")

Else

File1.Pattern = ("*.*")

End If

End Sub

Private Sub Drive1_Change ()

'To change drives

Dir1.Path = Drive1.Drive

End Sub

Private Sub File1_Click ()

If Combo1.ListIndex = 0 Then

File1.Pattern = ("*.wav")

ElseIf Combo1.ListIndex = 1 Then

File1.Pattern = ("*.mid")

Else

File1.Pattern = ("*.*")

End If

If Right(File1.Path, 1) <> "\" Then

filenam = File1.Path + "\" + File1.FileName

Else

filenam = File1.Path + File1.FileName

End If

Text1.Text = filename

End Sub

Private Sub play_Click ()

'To play WaveAudio file or Midi file

183

If Combo1.ListIndex = 0 Then

MMControl1.DeviceType = "WaveAudio"

ElseIf Combo1.ListIndex = 1 Then

MMControl1.DeviceType = "Sequencer"

End If

MMControl1.FileName = Text1.Text

MMControl1.Command = "Open"

MMControl1.Command = "Play"

End Sub

Private Sub stop_Click ()

MMControl1.Command = "Stop"

 End Sub

Private Sub Exit_Click ()

MMControl1.Command = "Close"

End

End Sub

Private Sub Drive1.Change()

Dir1.Path=Drive1.Drive

End Sub

Smart Audio Player Interface

184

Figure 5.3

185

5.3 Multimedia Player

In the preceding section, you have created an audio player. Now, by

making some minor modifications, you will transform the audio

player into a multimedia player that can play all kinds of movie files

besides audio files. This player will be created in such a way that it

can search for all types of media files in your computer drives and

play them.

In this project, you need to insert a ComboBox, a DriveListBox, a

DirListBox, a TextBox, a FileListBox, and a picture box (for

playing movies) into your form. I shall briefly discuss the function

of each of the above controls. You must also insert Microsoft

Multimedia Control (MMControl) in your form; you may make it

visible or invisible. In my program, I choose to make it invisible so

that I can use the command buttons created to control the player.

The program is similar to the audio player, but you need to add a

few extra statements so that you can play the video files and also the

mp3 files. First of all, you have to add two more file types with the

statements File1.Pattern = ("*.avi") and File1.Pattern =

("*.mpeg;*.mpg;*.mp3") so that the Avi and Mpeg movie files as

well as the mp3 files will show up in the file list box . Secondly,

you have to add the statement MMControl1.DeviceType =

"AVIVideo" so that the Microsoft Multimedia Control can play the

Avi video files and MMControl1.DeviceType = " " so that the

player can play other media files such as the mp3 files.

The Code

Private Sub Form_Load ()

Left = (Screen.Width - Width) \ 2

Top = (Screen.Height - Height) \ 2

Combo1.Text = "*.wav"

Combo1.AddItem "*.wav"

186

Combo1.AddItem "*.mid"

Combo1.AddItem "*.avi"

Combo1.AddItem "*.mpeg;*.mpg;*.mp3"

Combo1.AddItem "All files"

End Sub

Private Sub Combo1_Change ()

If ListIndex = 0 Then

File1.Pattern = ("*.wav")

ElseIf ListIndex = 1 Then

File1.Pattern = ("*.mid")

ElseIf ListIndex = 2 Then

File1.Pattern = ("*.avi")

ElseIf ListIndex = 3 Then

File1.Pattern = ("*.mpeg;*.mpg;*.mp3")

Else

Fiel1.Pattern = ("*.*")

End If

End Sub

Private Sub Dir1_Change ()

File1.Path = Dir1.Path

If Combo1.ListIndex = 0 Then

File1.Pattern = ("*.wav")

ElseIf Combo1.ListIndex = 1 Then

File1.Pattern = ("*.mid")

ElseIf Combo1.ListIndex = 2 Then

187

File1.Pattern = ("*.avi")

ElseIf Combo1.ListIndex = 3 Then

File1.Pattern = ("*.mpeg;*.mpg;*.mp3")

Else

File1.Pattern = ("*.*")

End If

End Sub

Private Sub Drive1_Change ()

Dir1.Path = Drive1.Drive

End Sub

Private Sub File1_Click ()

If Combo1.ListIndex = 0 Then

File1.Pattern = ("*.wav")

ElseIf Combo1.ListIndex = 1 Then

File1.Pattern = ("*.mid")

ElseIf Combo1.ListIndex = 2 Then

File1.Pattern = ("*.avi")

ElseIf Combo1.ListIndex = 3 Then

File1.Pattern = ("*.mpeg;*.mpg;*.mp3")

Else

File1.Pattern = ("*.*")

End If

If Right (File1.Path, 1) <> "\" Then

filenam = File1.Path + "\" + File1.FileName

Else

188

filenam = File1.Path + File1.FileName

End If

Text1.Text = filename

End Sub

Private Sub Exit_Click ()

MMControl1.Command = "Close"

End

End Sub

Private Sub Open_Click ()

If Combo1.ListIndex = 0 Then

MMControl1.DeviceType = "WaveAudio"

End If

If Combo1.ListIndex = 1 Then

MMControl1.DeviceType = "Sequencer"

End If

If Combo1.ListIndex = 2 Then

MMControl1.DeviceType = "AVIVideo"

End If

If Combo1.ListIndex = 3 Then

MMControl1.DeviceType = ""

End If

MMControl1.FileName = Text1.Text

MMControl1.Command = "Open"

End Sub

Private Sub play_Click ()

189

Timer1.Enabled = True

MMControl1.Command = "Play"

MMControl1.hWndDisplay = Picture1.hWnd

End Sub

Private Sub stop_Click ()

If MMControl1.Mode = 524 Then Exit Sub

If MMControl1.Mode <> 525 Then

MMControl1.Wait = True

MMControl1.Command = "Stop"

End If

MMControl1.Wait = True

MMControl1.Command = "Close"

End Sub

The Interface is shown in Figure 5.4

190

Figure 5.4

191

6 Tools and Utilities
6.1 BMI Calculator

Many people are obese nowadays and it is affecting their health

seriously. If a person’s BMI is more than 30, he or she is considered

obese. You can refer to the following range of BMI values for the

weight status.

• Underweight = <18.5

• Normal weight = 18.5-24.9

• Overweight = 25-29.9

• Obesity = BMI of 30 or greater

This BMI calculator is a Visual Basic program that can calculate the

body mass index, or BMI of a person based on the body weight in

kilogram and the body height in meter. BMI can be calculated using

the formula

2
height

weight

*weight is measured in kg and height in meter. If you only know

your weight and height in lb. and feet, then you need to convert

them to the metric system.

The Code

Private Sub Command1_Click ()

Label4.Caption = BMI (Text1.Text, Text2.Text)

End Sub

192

Private Function BMI (height, weight)

BMIValue = (weight) / (height ^ 2)

BMI = Format (BMIValue, "0.00")

End Function

The Interface is shown in Figure 5.5

Figure 6.1

193

6.2 Calculator

This is a typical calculator that consists of the number buttons, the

operator buttons, and some additional buttons such as the memory

button and the clear button.

To design the interface, you need to insert 25 command buttons, and

one label that functions as the display panel. The number buttons

from 1 to 9 are grouped together as a control array and named as

ButtonNum while 0 is a standalone command and named as Bzero.

The four basic operators are also grouped together as a control array

and named as Operator. Other buttons are named appropriately

according to their functions. The label is named as panel.

One of the most important procedures in the program is to control

the display on the panel. The procedure is

Private Sub ButtonNum_Click(Index As Integer)

If Num_of_digit > 0 Then

If Num_of_digit < 30 Then

panel. Caption = panel.Caption + Right$(Str(Index), 1)

Num_of_digit = Num_of_digit + 1

End If

Else

panel.Caption = Right$(Str(Index), 1)

Num_of_digit = 1

End If

CheckValue

End Sub

The Num_of_digit is a variable that is used to check the number of

digits that appear on the display panel. The procedure will ensure

that if the number of digits is more than one, the preceding digit will

194

be pushed to the left and the succeeding digit will remain on the

right. However, if the number of digits is zero, the digit clicked will

just appear on the rightmost position of the panel.

Another important procedure is the procedure to perform the

calculations. This can be achieved through the Operator and the

Equal sub procedures. The Operator sub procedure is as follows:

Private Sub Operator_Click(Index As Integer)

CheckValue

If Index = 11 Then

a = displayValue

key = 1

ElseIf Index = 12 Then

b = displayValue

key = 2

ElseIf Index = 13 Then

c = displayValue

key = 3

ElseIf Index = 14 Then

d = displayValue

key = 4

ElseIf Index = 15 Then

f = displayValue

key = 5

End If

Num_of_digit = 0

newNumber = True

195

End Sub

This procedure ensures that when a operator button is pressed, the

variable key is assigned a number so that the program knows which

operator is being pressed. The calculation is then executed using the

Equal sub procedure which is shown below:

Private Sub Equal_Click()

CheckValue

If newNumber = True Then

If key = 1 Then

e = displayValue + a

ElseIf key = 2 Then

e = b - displayValue

ElseIf key = 3 Then

e = displayValue * c

ElseIf key = 5 Then

e = (f * displayValue) / 100

ElseIf key = 4 And displayValue <> 0 Then

e = d / displayValue

Else

GoTo error

End If

If Abs(e) < 1 Then

panel.Caption = Format(e, "General Number")

Else

panel.Caption = Str(e)

196

End If

Else

panel.Caption = displayValue

End If

GoTo finish

error: panel.Caption = "E"

finish:

Num_of_digit = 0

newNumber = False

End Sub

The displayValue is the value that is displayed on the panel and this

value is checked through the CheckValue sub procedure. The

statements

If Abs(e) < 1 Then

panel.Caption = Format(e, "General Number")

Else

panel.Caption = Str(e)

End If

are to ensure that when the absolute value is less than 0, the zero

appears in front of the decimal point, for example, 0.5 instead of

just .5. The whole program is shown overleaf.

197

The Code

Option Explicit

Dim Num_of_digit As Integer

Dim key As Integer

Dim displayValue As Variant

Dim a, b, c, d, e, f, g As Variant

Dim memo As Variant

Dim newNumber As Boolean

Private Sub BZero_Click(Index As Integer)

If Num_of_digit > 0 Then

panel.Caption = panel.Caption + "0"

Else

panel.Caption = "0"

Num_of_digit = Num_of_digit + 1

End If

CheckValue

End Sub

Sub CheckValue()

displayValue = Val(panel.Caption)

End Sub

Private Sub ButtonNum_Click(Index As Integer)

If Num_of_digit > 0 Then

If Num_of_digit < 30 Then

panel.Caption = panel.Caption + Right$(Str(Index), 1)

Num_of_digit = Num_of_digit + 1

198

End If

Else

panel.Caption = Right$(Str(Index), 1)

Num_of_digit = 1

End If

CheckValue

End Sub

Private Sub Clear_Click()

panel.Caption = "0"

displayValue = "0"

Num_of_digit = 0

End Sub

Private Sub ClearAll_Click()

panel.Caption = "0"

displayValue = "0"

memo = 0

End Sub

Private Sub Equal_Click()

CheckValue

If newNumber = True Then

If key = 1 Then

e = displayValue + a

ElseIf key = 2 Then

199

e = b - displayValue

ElseIf key = 3 Then

e = displayValue * c

ElseIf key = 5 Then

e = (f * displayValue) / 100

ElseIf key = 4 And displayValue <> 0 Then

e = d / displayValue

Else

GoTo error

End If

If Abs(e) < 1 Then

panel.Caption = Format(e, "General Number")

Else

panel.Caption = Str(e)

End If

Else

panel.Caption = displayValue

End If

GoTo finish

error: panel.Caption = "E"

finish:

Num_of_digit = 0

newNumber = False

End Sub

Private Sub MemoCancel_Click()

memo = 0

200

End Sub

Private Sub Memory_Click()

CheckValue

memo = displayValue

Num_of_digit = 0

End Sub

Private Sub Operator_Click(Index As Integer)

CheckValue

If Index = 11 Then

a = displayValue

key = 1

ElseIf Index = 12 Then

b = displayValue

key = 2

ElseIf Index = 13 Then

c = displayValue

key = 3

ElseIf Index = 14 Then

d = displayValue

key = 4

ElseIf Index = 15 Then

f = displayValue

key = 5

End If

Num_of_digit = 0

201

newNumber = True

End Sub

Private Sub Plus_minus_Click()

CheckValue

g = -1 * displayValue

displayValue = g

panel.Caption = Str(displayValue)

CheckValue

End Sub

Private Sub Poin_Click()

Static point_lock As Integer

If point_lock = 0 And Num_of_digit < 20 Then

panel.Caption = panel.Caption + "."

Num_of_digit = Num_of_digit + 1

End If

CheckValue

End Sub

Private Sub Recall_Click()

panel.Caption = Str(memo)

End Sub

Private Sub SqRoot_Click()

CheckValue

If displayValue >= 0 Then

panel.Caption = Str(Sqr(displayValue))

Else

panel.Caption = "E"

202

End If

Num_of_digit = 0

End Sub

Private Sub Summation_Click()

CheckValue

memo = memo + displayValue

Num_of_digit = 0

End Sub

The Interface is shown in Figure 5.6

Figure 6.2

203

6.3 Digital Clock

Visual Basic programming is so simple that sometimes you just

need to write a one line code to create a wonderful tiny little but

nice application. For example, you can write a one-line code to

create a digital clock.

In this program, you must insert a timer control into the form. Then

go to the properties window to set the timer's interval value to 1000

so that Visual Basic updates the time every 1000 milliseconds, or

once a second. Other properties that you ought to set are to change

the caption such as "My Clock" and to set Form1's MaxButton to

false so that it cannot be resized by the user.

Now, double click the timer and enter the one line code as follows:

 Private Sub Timer1_Timer()

 Label1.Caption = Time

 End Sub

The Design Interface

Figure 6.3

The Runtime Interface is shown in Figure 5.8.

Figure 6.4

204

6.4 Polling System

Survey and polling tools are often used in marketing or politics to

assess ratings for some services or products. Polling tools be in

many forms, some just use a simple dichotomous scale of Yes and

No, or a more complex Likert Scale that consists of three or more

choices. You can create Polling tool in Visual Basic easily by using

the option buttons. In our program, the users are given five choices,

Excellent, Very Good, Good, Satisfactory and Bad. The results are

presented in frequency and percentage, respectively.

In this example, you can include a graphical display of the

percentages of the five scores using the Line method. The syntax to

draw the rectangular bars in a picture box is

Picture1.Line (x1, y1)-(x2, y2), color, BF

Where (x1, y1) is the coordinates of the upper left corner of the bar

and (x2, y2) is the coordinates of the lower right corner of the bar.

To show the bar length according to the percentage, you can use a

certain value to multiply the decimal value of each score and put it

under x2.

Finally, you can use the Picture1.Cls method to clear the picture box

to refresh the drawing.

The Code

Dim total, Excel_total, VG_total, G_total, Sat_total, Bad_total As

Integer

Dim Excel_percent, VG_percent, G_percent, Sat_percent, Bad_percent

As _ Single

Dim done As Boolean

Private Sub cmd_Vote_Click()

Picture1.Cls

If Option_Excel.Value = True Then

205

Excel_total = Excel_total + 1

Lbl_ExcelTotal = Excel_total

ElseIf Option_VG.Value = True Then

VG_total = VG_total + 1

Lbl_VGTotal = VG_total

ElseIf Option_G.Value = True Then

G_total = G_total + 1

Lbl_GTotal = G_total

ElseIf Option_Sat.Value = True Then

Sat_total = Sat_total + 1

Lbl_SatTotal = Sat_total

ElseIf Option_Bad.Value = True Then

Bad_total = Bad_total + 1

Lbl_BadTotal = Bad_total

End If

total = Excel_total + VG_total + G_total + Sat_total + Bad_total

Lbl_Total = total

Excel_percent = Excel_total / total

VG_percent = VG_total / total

G_percent = G_total / total

Sat_percent = Sat_total / total

Bad_percent = Bad_total / total

Lbl_Excel.Caption = Format(Excel_percent, "Percent")

Lbl_VG.Caption = Format(VG_percent, "Percent")

Lbl_G.Caption = Format(G_percent, "Percent")

Lbl_Sat.Caption = Format(Sat_percent, "Percent")

Lbl_Bad.Caption = Format(Bad_percent, "Percent")

Picture1.Line (100, 750)-(3800 * Excel_percent, 950), vbRed, BF

Picture1.Line (100, 1450)-(3800 * VG_percent, 1650), vbMagenta, BF

Picture1.Line (100, 2150)-(3800 * G_percent, 2350), vbGreen, BF

Picture1.Line (100, 2850)-(3800 * Sat_percent, 3050), vbBlue, BF

Picture1.Line (100, 3550)-(3800 * Bad_percent, 3750), vbYellow, BF

End Sub

206

Figure 6.5

207

6.5 Digital Stopwatch

You can design a stopwatch so that it resembles a typical digital

stopwatch. When the user clicks mode, he or she can select clock,

date and stopwatch. When he or she selects clocks, the current time

is displayed and when date is selected, the current date will be

displayed. Lastly, when the user selects the stopwatch, all the digits

will be set to 0 so that it can be used as a stopwatch.

In this program, you need to insert one label, three command

buttons and two timers. The interval of timer1 which is used for the

stopwatch and you need to set the interval at 1(1000th of a second).

Timer2 will be used to display the clock and the interval will be set

at 1000(or 1 second). Besides, you can also use six string variables

to display the digits of the stopwatch so that you can put in the

colons ":" and the decimal point. Now, you need to create a

subroutine known as countime.

The code

Dim a As String

Dim b As String

Dim c As String

Dim x As String

Dim y As String

Dim z As String

Dim h As String

Dim m As String

Dim s As String

Dim u As String

Dim v As String

Public interval As Double

Private Sub clock_Click()

Timer1.Enabled = False

Timer2.Enabled = True

End Sub

208

Private Sub Command1_Click()

Timer1.Enabled = True

Timer1.interval = 1

End Sub

Private Sub Command2_Click()

Timer1.Enabled = False

End Sub

Private Sub Command3_Click()

Timer1.Enabled = False

a = "0"

b = "0"

c = "0"

x = "0"

y = "0"

z = "0"

u = "0"

v = "0"

h = a + b

m = c + x

s = y + z

'To set the display as "00:00:00.00"

Label1.Caption = h + ":" + m + ":" + s + "." + u + v

End Sub

Sub counttime()

If Val(v) < 9 Then

v = v + 1

Label1.Caption = a + b + ":" + c + x + ":" + y + z + "." + u + v

ElseIf Val(u) < 9 Then

v = 0

u = u + 1

209

Label1.Caption = a + b + ":" + c + x + ":" + y + z + "." + u + v

ElseIf Val(z) < 9 Then

v = 0

u = 0

z = z + 1

Label1.Caption = a + b + ":" + c + x + ":" + y + z + "." + u + v

ElseIf Val(y) < 5 Then

v = 0

u = 0

z = 0

y = y + 1

Label1.Caption = a + b + ":" + c + x + ":" + y + z + "." + u + v

ElseIf Val(x) < 9 Then

v = 0

u = 0

z = 0

y = 0

x = x + 1

Label1.Caption = a + b + ":" + c + x + ":" + y + z + "." + u + v

ElseIf Val(c) < 5 Then

v = 0

u = 0

z = 0

y = 0

x = 0

c = c + 1

Label1.Caption = a + b + ":" + c + x + ":" + y + z + "." + u + v

ElseIf Val(b) < 9 Then

v = 0

u = 0

z = 0

y = 0

x = 0

c = 0

b = b + 1

Label1.Caption = a + b + ":" + c + x + ":" + y + z + "." + u + v

ElseIf Val(b) < 9 Then

210

v = 0

u = 0

z = 0

y = 0

x = 0

c = 0

b = b + 1

Label1.Caption = a + b + ":" + c + x + ":" + y + z + "." + u + v

ElseIf Val(a) < 9 Then

v = 0

u = 0

z = 0

y = 0

x = 0

c = 0

b = 0

a = a + 1

Label1.Caption = a + b + ":" + c + x + ":" + y + z + "." + u + v

End If

End Sub

Private Sub date_Click()

Label1.Caption = Date

Timer2.Enabled = False

End Sub

Private Sub Form_Load()

a = "0"

b = "0"

c = "0"

x = "0"

y = "0"

z = "0"

u = 0

v = 0

h = a + b

211

m = c + x

s = y + z

'To set the display as "00:00:00.00"

Label1.Caption = h + ":" + m + ":" + s + "." + u + v

End Sub

Private Sub stopwc_Click()

Timer2.Enabled = False

a = "0"

b = "0"

c = "0"

x = "0"

y = "0"

z = "0"

u = "0"

v = "0"

h = a + b

m = c + x

s = y + z

Label1.Caption = h + ":" + m + ":" + s + "." + u + v

End Sub

Private Sub Timer1_Timer()

counttime

End Sub

Private Sub Timer2_Timer()

Label1.Caption = Time

End Sub

To add the menu items to the interface, you need to add them from

the menu editor, as shown in Figure 6.6

212

Figure 6.6

The runtime Interface is shown in Figure 6.7

213

Figure 6.7

214

6.6 Choice Selection Program

Very often when you visit a website, you are presented with a list of

choices for you to select. Choice selection can easily be

programmed in Visual Basic; the control that you can use is the

check box. The status of the check box is either checked or

unchecked, and the syntax is Checkbox1.Value=VbChecked or

Checkbox1.Value=vbUnchecked. In the following program, you

can construct a three-choice selection list. After the user made the

selection, a message box will appear to display the list of

selected choices

The Code

Private Sub Command1_Click()

If Check1.Value = vbChecked And Check2.Value = vbChecked And

Check3.Value = vbChecked Then

MsgBox ("You like Reading, Computer and Sports")

ElseIf Check1.Value = vbChecked And Check2.Value = vbChecked And

Check3.Value = vbUnchecked Then

MsgBox ("You like Reading and Computer")

ElseIf Check1.Value = vbChecked And Check2.Value = vbUnchecked

And Check3.Value = vbChecked Then

MsgBox ("You like Reading and Sports")

ElseIf Check1.Value = vbUnchecked And Check2.Value = vbChecked

And Check3.Value = vbChecked Then

MsgBox ("You like Computer and Sports")

ElseIf Check1.Value = vbChecked And Check2.Value = vbUnchecked

And Check3.Value = vbChecked Then

MsgBox ("You like Reading and Sports")

ElseIf Check1.Value = vbChecked And Check2.Value = vbUnchecked

And Check3.Value = vbUnchecked Then

MsgBox ("You like Reading only ")

ElseIf Check1.Value = vbUnchecked And Check2.Value = vbChecked

And Check3.Value = vbUnchecked Then

MsgBox ("You like computer only")

ElseIf Check1.Value = vbUnchecked And Check2.Value = vbUnchecked

215

And Check3.Value = vbChecked Then

MsgBox ("You like Sports only")

Else

MsgBox ("You have no hobby")

End If

End Sub

The Interface is shown in Figure 6.8.

Figure 6.8

216

7 Database Applications
7.1 Simple Database Management System

This is a simple database management system that stores data using

a text file. First, the program will check whether the text file is open

or not and if the file does not exist, the program prompts the user to

create the file by displaying the create button.

However, if the file is already there, the program will change the

caption of the create button to open file. The program uses Append

in the place of Output so that new data will be added to the end of

the file instead of overwriting the old data. The program will also

show the input box repeatedly so that the user can enter data

continuously until he or she enters the word “finish”.

The program also introduces the error handler to handle errors while

reading the file or deleting the file because the program cannot read

or delete the file when the file has not been created. The syntax for

error handler is On Error Goto Label where the label is an error

handling sub procedure. For example, when the program is trying to

read the file when the file does not exist, it will go the label

file_error and the error handling object ‘err’ will display an error

message with its description property which takes the format

err.description.

The program uses the vbCrLf constant when reading the data so

that the data will appear line by line instead of a continuous line.

The vbCrLf constant is equivalent to the pressing of the Enter key

(or return key) so that the next data will go to the newline. The

program is using the Do…Loop to read all the data until it reaches

the end of the file by issuing the command Loop While Not EOF.

217

The Code

Dim studentname As String

Dim intMsg As String

Private Sub Command1_Click()

'To read the file

Text1.Text = ""

Dim variable1 As String

On Error GoTo file_error

Open "C:\My Folder\sample.txt" For Input As #1

Do

Input #1, variable1

Text1.Text = Text1.Text & variable1 & vbCrLf

Loop While Not EOF(1)

Close #1

Exit Sub

file_error:

MsgBox (Err.Description)

End Sub

Private Sub Command2_Click()

'To delete the file

On Error GoTo delete_error

Kill "D:\Liew Folder\sample.txt"

Exit Sub

delete_error:

MsgBox (Err.Description)

End Sub

Private Sub create_Click()

'To create the file or open the file for new data entry

Open "D:\MyFolder\sample.txt" For Append As #1

intMsg = MsgBox("File sample.txt opened")

Do

studentname = InputBox("Enter the student Name or type finish to

218

end")

If studentname = "finish" Then

Exit Do

End If

Write #1, studentname & vbCrLf

intMsg = MsgBox("Writing " & studentname & " to sample.txt ")

Loop

Close #1

intMsg = MsgBox("File sample.txt closed")

End Sub

Private Sub Form_Load()

On Error GoTo Openfile_error

Open "D:\ MyFolder\sample.txt" For Input As #1

Close #1

Exit Sub

Openfile_error:

MsgBox (Err.Description), , "Please create a new file"

create.Caption = "Create File"

End Sub

The Interface is shown in Figure 7.1.

219

Figure 7.1

220

7.2 A Simple Database Application

In this example, you will create a simple database application which

enables the user to browse customers' names. To create this

application, insert the data control into the new form. Place the data

control somewhere at the bottom of the form. Name the data control

as data_navigator. To be able to use the data control, you must

connect it to any database. You can create a database file using any

database application, but I suggest you use the database files that

come with VB6. Let us select NWIND.MDB as the database file.

To connect the data control to this database, double-click the

DatabaseName property in the properties window and select the

above file. Next, double-click on the RecordSource property to

select the customers’ table from the database. You can also change

the caption of the data control to anything but I use "Click to browse

Customers" here. After that, insert a label and change its caption to

Customer Name.

Finally, insert another label and name it as cus_name and leave the

label empty as customers' names will appear here when the user

clicks the arrows on the data control. You need to bind this label to

the data control for the application to work. To do this, open the

label's DataSource and select data_navigator, which will appear

automatically. One more thing that you need to do is to bind the

label to the correct field so that data in the field will appear on the

label. To do this, open the DataField property and select

ContactName. Now, press F5 and run the program. You should be

able to browse all the customers' names by clicking the arrows on

the data control, as shown in Figure 7.2.

221

Figure 7.2

Now you shall modify the same application to make it a little more

advanced database management system. The data control supports

some methods that are useful in manipulating the database, for

example, moving the pointer to a certain location. The following are

some of the commands that you can use to move the pointer around.

' Move to the first

 recorddata_navigator.RecordSet.MoveFirst

 ' Move to the last record

data_navigator.RecordSet.MoveLast

222

' Move to the next record

data_navigator.RecordSet.MoveNext

 ' Move to the first record

data_navigator.RecordSet.Previous

*note: data_navigator is the name of the data control

Now, insert four command buttons and label them as First Record,

Next Record, Previous Record and Last Record. They will be used

to navigate the database without using the data control. You still

need to retain the same data control (from example in lesson 19) but

set the property Visible to False so that users will not see the data

control but use the buttons instead to browse through the database.

Double-click on the command button and enter the code below:

Private Sub CmdMoveFirst_Click ()

dtaBooks.Recordset.MoveFirst

End Sub

Private Sub CmdMoveNext_Click ()

 dtaBooks.Recordset.MoveNext

End Sub

Private Sub CmdMovePrev_Click ()

dtaBooks.Recordset.MovePrevious

End Sub

Private Sub CmdMoveLast_Click ()

dtaBooks.Recordset.MoveLast

End Sub

Run the application and you will obtain the interface as shown in

223

Figure 7.3 and you will be able to browse the database using the

four command buttons.

Figure 7.3

224

7.3 A Library Management System

You have learned how to build Visual Basic database applications

using data control. However, data control is only a basic tool, it

works only with limited kinds of data and must work strictly in the

Visual Basic environment. To overcome these limitations, you can

use a much more powerful data control in Visual Basic known

as ADO control.

ADO stands for ActiveX data object. As ADO is ActiveX-based, it

can operate on different platforms. Besides, it can access many

kinds of data such as web-based data displayed in Internet browsers,

email text and even graphics other than the usual relational and non-

relational database information. To be able to use ADO data control,

you need to insert it into the toolbox. To do this, simply press

Ctrl+T to open the components dialog box and select Microsoft

ActiveX Data Control 6. From here you can proceed to build the

ADO-based Library Management System.

First, name the new form as FormLibrary and change its caption to

Library Management System. Secondly, insert the ADO data

control and name it as adoBooks and change its caption to book.

Next, insert the necessary labels, text boxes and command buttons.

The runtime interface of this program is shown in Figure 7.4; it

allows adding and deleting as well as updating and browsing of data.

225

Figure 7.4

The properties of all the controls are listed in the Table 7.1.

Table 7.1

Object Property

Form Name : FormLibrary

Caption: Book Titles -Library Management
System

ADO Name :AdoLibrary

Label1 Name : Titlelbl

Caption: Book Title

Label2 Name: Subjectlbl

Caption : Subject :Year Published:

Label3 Name: Yearlbl

Caption : Year Published

226

Label 4 Name : ISBNlbl

Caption :ISBN

Labe5 Name : PubIDlbl

Caption :Publisher's ID:

Text1 Name : Titletxt

DataField :Title

DataSource :AdoLibrary

Text3 Name: YearTxt

DataField :Year Published

DataSource: AdoLibrary

Text3 Name : ISBNTxt

DataField :ISBN

DataSource : AdoLibrary

Text4 Name: Pubtxt

DataField : PubID

DataSource: AdoLibrary

Text2 Name : Subject Txt

DataField : Subject

DataSource: AdoLibrary

Command Button1 Name :save

Caption :Save

Command Button2 Name : add

227

Caption: Add

Command Button3 Name: delete

Caption: Delete

Command Button4 Name : cancel

Caption :&Cancel

Command Button5 Name: exit

Caption :Exit

To be able to access and manage a database, you need to connect

the ADO data control to a database file. You will use the access

database file BIBLIO.MDB that comes with VB6. To connect

ADO to this database file, follow the steps below:

a) Click on the ADO control on the form and open up the properties

window.

b) Click on the ConnectionString property and the following

dialog box will appear.

228

Figure 7.5

When the dialog box appears, select Use Connection String. Next,

click build and at the Data Link dialog box, double-click the option

labelled Microsoft Jet 3.51 OLE DB provider, as shown in Figure

7.6.

229

Figure 7.6

After that, click the Next button to select the file BIBLO.MDB.

You can click on Test Connection to ensure that the connection to

the database file is working. Click OK to finish the connection.

Finally, click on the RecordSource property and set the command

type to adCmd Table and Table name to Titles.

230

Figure 7.7

Now, you need to write codes for all the command buttons, after

which you can make the ADO control invisible.

For the Save button, the procedure code is as follows:

Private Sub save_Click()

On Error GoTo errSave

AdoLibrary.Recordset.Fields("Title") = TitleTxt.Text

AdoLibrary.Recordset.Fields("Year Published") = YearTxt.Text

AdoLibrary.Recordset.Fields("ISBN") = ISBNTxt.Text

AdoLibrary.Recordset.Fields("PubID") = PubTxt.Text

AdoLibrary.Recordset.Fields("Subject") = SubjectTxt.Text

AdoLibrary.Recordset.Update

Exit Sub

231

errSave:

MsgBox (Err.Description)

End Sub

For the Add button, the procedure code is as follows:

Private Sub Add_Click()

On Error GoTo addErr

AdoLibrary.Recordset.AddNew

Exit Sub

addErr:

MsgBox (Err.Description)

End Sub

For the Delete button, the procedure code is as follows:

Private Sub delete_Click()

Confirm = MsgBox("Are you sure you want to delete this record?",

vbYesNo, "Deletion Confirmation")

If Confirm = vbYes Then

On Error GoTo deleteErr

AdoLibrary.Recordset.delete

MsgBox "Record Deleted!",, "Message"

Else

MsgBox "Record Not Deleted!", , "Message"

End If

Exit Sub

232

deleteErr:

MsgBox (Err.Description), , "Empty record, please enter all the info"

End Sub

For the Cancel button, the procedure is as follows:

Private Sub cancel_Click()

TitleTxt.Text = ""

YearTxt.Text = ""

PubTxt.Text = ""

ISBNTxt.Text = ""

SubjectTxt.Text = ""

End Sub

Now you shall enhance the library management system by adding

some new features such as a welcome dialog, a registration dialog, a

login dialog, and SQL search capabilities. The registration dialog

will accept users' registrations and the login dialog will handle a

login command that requires the user to enter a password, thus

enhancing the security aspect of the database management system.

Basically, the application will constitute a welcome menu, a

registration menu, a login menu, and the main database menu. The

sequence of the dialogs is illustrated in the flowchart below:

233

First, insert a form and design it as the Welcome menu as shown in

the Figure 7.8. In this form, insert three command buttons and set

their properties as listed in Table 7.2.

Figure 7.8

Welcome

Registered Users

Registration

Login

Database

234

Table 7.2

Object Name Caption

Form name main_menu Electronic
Library

command button 1 cmdRegister Register

command button 2 cmdLogin Login

command button 3 cmdCancel Cancel

The procedure code for the welcome menu is shown below:

Private Sub cmdLogin_Click ()

main_menu.Hide

Login_form.Show

End Sub

Private Sub cmdRegister_Click ()

main_menu.Hide

Register. Show

End Sub

If a new user clicks the Register button, the registration form will

appear. This registration form consists of two text boxes, three

command buttons and an ADO control. Their properties are listed in

the Table 7.3 and the interface is shown Figure 7.9. Note that the

PasswordChar of the Text2 textbox is set as * to hide the real

passwords from others.

235

Table 7.3

Object Property

Form Name :Register

Caption: Registration
Form

Text1 Name: txtName

Text2 Name: txtpassword

Text2 PasswordChar : *

command button 1 Name :cmdConfirm

Caption: Confirm

command button 2 Name: cmdClear

Caption: Clear

command button 3 Name: cmdCancel

Caption: Cancel

ADO control name Name :UserInfo

236

Figure 7.9

To connect the ADO to a database, you must create a database file

in Microsoft Access. The database file must contain at least two

fields, one for the username and the other one for the password. The

procedure code for the registration form is as follows:

Private Sub cmdClear_Click ()

txtName.Text = ""

txtpassword.Text = ""

End Sub

Private Sub cmdConfirm_Click ()

UserInfo.Recordset.Fields ("username") = txtName.Text

UserInfo.Recordset.Fields ("password") = txtpassword.Text

UserInfo.Recordset.Update

Register. Hide

Login_form.Show

End Sub

Private Sub Form_Load ()

UserInfo.Recordset.AddNew

End Sub

237

The login dialog is illustrated in Figure 7.10.

Figure 7.10

There are two text boxes and a command button on the Login

form. Their properties are set as in Table 7.4.

Table 7.4

Object Property

Text1 Name: txtName

Text2 Name: txtpassword

PasswordChar *

Command
button 1

Name: cmdLogin

Caption: Login

Form name Name: Login form

Caption: Login Menu

238

The Code

Private Sub cmdLogin_Click()

Dim usrname As String

Dim psword As String

Dim usernam As String

Dim pssword As String

Dim Msg As String

Register.UserInfo.Refresh

usrname = txtName.Text

psword = txtpassword.Text

Do Until Register.UserInfo.Recordset.EOF

If Register.UserInfo.Recordset.Fields ("username").Value = usrname

And Register.UserInfo.Recordset.Fields ("password").Value = psword

Then

Login_form.Hide

frmLibrary.Show

Exit Sub

Else

Register.UserInfo.Recordset.MoveNext

End If

Loop

Msg = MsgBox ("Invalid password, try again!", vbOKCancel)

If (Msg = 1) Then

Login_form.Show

txtName.Text = ""

txtpassword = ""

Else

End

 End If

End Sub

239

Now you shall modify the library management system interface and

add even more features to it. You shall add the following

components:

• Database navigation buttons

• Microsoft DataGrid Control 6.0

• Search Box

The properties of the command buttons are set as shown in the table

on next page.

Table 7.5

Object Property

Command button 1 Name: cmdFirst

Caption: First Record

Command button 2 Name: cmdNext

Caption: Next Record

Command button 3 Name: cmdPrevious

Caption: Previous Record

Command button 4 Name: cmdLast

Caption: Last Record

Command button 5 Name: cmdViewAll

Caption: View All Records

240

Label1 Name: LblSearch

Caption: Search

Option Button1 Name: Opt_ISBN

Caption: ISBN

Option Button 2 Name: Opt_Author

Caption: Author

Option Button 3 Name: Opt_Title

Caption: Title

Microsoft DataGrid Control
6.0

Name: DataLibrary

The code for the navigation buttons is as follows:

Private Sub cmdFirst_Click()

AdoLibrary.Recordset.MoveFirst

End Sub

Private Sub cmdLast_Click()

AdoLibrary.Recordset.MoveLast

End Sub

Private Sub cmdNew_Click()

AdoLibrary.Recordset.AddNew

End Sub

Private Sub cmdNext_Click()

241

AdoLibrary.Recordset.MoveNext

End Sub

Private Sub cmdPrevious_Click()

AdoLibrary.Recordset.MovePrevious

End Sub

To add search and query capability to the library management

system, you can use SQL (Structures Query Language). To be able

to use SQL with Visual Basic, you must connect the Visual Basic

application to the database library.mdb using the following

statements under the Form_Load procedure:

'To connect to MS Access database library.mdb

AdoLibrary.ConnectionString = "

Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\My Documents\VB

Program\library.mdb;Persist Security Info=False"

AdoLibrary.RecordSource = "SELECT * FROM book"

AdoLibrary.Refresh

Set DataLibrary.DataSource = AdoLibrary

AdoLibrary.Refresh

*You must change the path of your database file to the actual path

of the database file in your computer.

The code for SQL queries based on ISBN, author and book title is

as follows:

Dim SearchString As String

SearchString = TxtSearch.Text

'Search for ISBN that is same as SearchString

242

If Opt_ISBN.Value = True Then

AdoLibrary.RecordSource = "SELECT * FROM book WHERE ISBN='" &

SearchString & "'"

ElseIf Opt_Author.Value = True Then

'Search for author name that starts with first alphabet of SearchString

AdoLibrary.RecordSource = "SELECT * FROM book WHERE Author Like

'" & SearchString & "%'"

ElseIf Opt_Title.Value = True Then

'Search for Title that starts with first alphabet of SearchString

AdoLibrary.RecordSource = "SELECT * FROM book WHERE Title Like '"

& SearchString & "%'"

Explanations:

SELECT * means select ALL the records, FROM means to select

information from a certain table, WHERE is the keyword that set

the conditions of the query while LIKE and % are used together to

search for information that begins the with first alphabet of

SearchSrting

The Full code for the SQL search and the DataGrid is as follows:

Private Sub cmdSearch_Click()

Dim SearchString As String

SearchString = TxtSearch.Text

If Opt_ISBN.Value = True Then

AdoLibrary.RecordSource = "SELECT * FROM book WHERE ISBN='" &

SearchString & "'"

243

ElseIf Opt_Author.Value = True Then

AdoLibrary.RecordSource = "SELECT * FROM book WHERE Author Like

'" & SearchString & "%'"

ElseIf Opt_Title.Value = True Then

AdoLibrary.RecordSource = "SELECT * FROM book WHERE Title Like '"

& SearchString & "%'"

End If

AdoLibrary.Refresh

'To reset the column width of datagrid DataLibrary

With DataLibrary

.Columns(0).Width = 2200

.Columns(1).Width = 4500

.Columns(2).Width = 2800

.Columns(3).Width = 2000

.Columns(4).Width = 800

.Columns(5).Width = 1500

End With

End Sub

Private Sub CmdViewAll_Click()

AdoLibrary.RecordSource = "SELECT * FROM book"

AdoLibrary.Refresh

'To reset the column width of datagrid DataLibrary

With DataLibrary

.Columns(0).Width = 2200

.Columns(1).Width = 4500

.Columns(2).Width = 2800

244

.Columns(3).Width = 2000

.Columns(4).Width = 800

.Columns(5).Width = 1500

End With

End Sub

Private Sub Form_Load()

'To connect to MS Access database library.mdb

AdoLibrary.ConnectionString = "

Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\ My Documents\ VB

Program\library.mdb;Persist Security Info=False"

AdoLibrary.RecordSource = "SELECT * FROM book"

AdoLibrary.Refresh

Set DataLibrary.DataSource = AdoLibrary

AdoLibrary.Refresh

'To Set the alignment of the window to center of screen

Left = (Screen.Width - Width) \ 2

Top = (Screen.Height - Height) \ 2

'To set the alignment of the datagrid to centre of form

DataLibrary.Left = (Form1.Width - DataLibrary.Width) \ 2

'To set the column width of datagrid DataLibrary

With DataLibrary

.Columns(0).Width = 2200

.Columns(1).Width = 4500

.Columns(2).Width = 2800

.Columns(3).Width = 2000

245

.Columns(4).Width = 800

.Columns(5).Width = 1500

End With

End Sub

The Interface

Figure 7.11

246

7.4 Inventory Management System

All businesses involve inventory and need to manage it efficiently

to ensure smooth running of the business activities and profitability.

To manage inventory efficiently, business owners need to develop a

good inventory management system. Building a sound inventory

management system usually incurs high cost. Fortunately, you can

use Visual Basic 6 to build an inventory management system which

does not require big capital; you can do it at home. In Visual Basic

6, there are several built-in database management tools which you

can use to manage the data.

To start building a good inventory system, you need to have good

planning. First, you must sit down with your client to get detail

information about his or her businesses and establish the kind of

system he or she wants. For example, you need to know what types

of goods they are dealing with, the turn-over volumes, cost prices,

selling prices and more. Besides that, you need to know what kind

of documents the system needs to deal with like invoices, delivery

orders and more.

After getting all the necessary information from your client, you can

then start to build a database. Based on the number and types of

products, you need to decide what are the variables or fields needed

to be included in the database’s tables. You shall use a hypothetical

case to illustrate how to build an inventory system as shown above.

Let us say our client is dealing with electrical goods.

Step 1: Creating the database tables

To design the database tables, you need to determine how many

tables are needed. To keep things simple, you shall limit to two

tables in our example.

The first table shall be used to store the data of the inventory or

stock in hand. The second table shall be used to record stocks

coming in and stocks going out.

247

The first table shall comprise the following fields:

• Category

• Brand

• Item Description

• Model Number

• Stock

• Unit Cost

The second table shall comprise the following fields:

• Date

• Category

• Brand

• Item Description

• Model Number

• Stock In

• Stock Out

• Unit Cost

• Total Cost

In our example, you can name the first table Inventory and the

second table Stock .After designing the tables, you can then

proceed to create a database that comprises the two tables. You can

either use Microsoft Access to create the database or you can use

the built-in Visual Data Manager in Visual Basic 6. Visual Data

Manager can be used to create tables, add new data as well as edit

data. Besides that, it can be used to modify table structure. To learn

248

how to create database using Visual Data Manager, follow the link

below:

http://www.vbtutor.net/index.php/creating-database-using-

visual-data-manager/

 Step 2: Inserting controls into Form

The next step is to insert some relevant controls into the form for

displaying and manipulating the data of the database. The controls

to be inserted are ADO data controls, DataGrid controls,

FlexGrid control and various command buttons. DataGrid control

and FlexGrid control are used to display and store the data from the

database tables. On the other hand, ADO data control is used to

manipulate the database such as connecting the DataGrid and

FleGrid to the database.

To be able to use ADO data control, you need to insert it into the

toolbox. To do this, simply press Ctrl+T to open the components

dialog box and select Microsoft ActiveX Data Control 6. After

this, you can proceed to build your ADO-based VB database

applications. In our example, you need to insert two ADO data

controls and name them AdoInventory and AdoStock respectively.

The first is to deal with data in the Inventory table and the second is

to deal with data in the Stock table. Besides, you can also insert two

DataGrid controls and named them DataInventory and DataStock

respectively. They are used to display the data to the user. Finally,

you can insert one FlexiGrid control to store the data and to print

out the data by connecting it to MS Excel spreadsheet.

Step 3: Writing the Code

After inserting the necessary controls, it is time to write code to

coordinate the controls and to manipulate the data. The first most

important code for our program is to connect the ADO data controls

to the database when the form is loaded. It comprises SQL syntax

like SELECT and FROM. The code is as follows:

http://www.vbtutor.net/index.php/creating-database-using-visual-data-manager/
http://www.vbtutor.net/index.php/creating-database-using-visual-data-manager/

249

Private Sub Form_Load()

'To connect AdoInventory to MS Access database inventory_br.mdb

AdoInventory.ConnectionString = "

Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\My

Documents\inventory_br.mdb;Persist Security Info=False"

AdoInventory.RecordSource = "SELECT * FROM Inventory"

AdoInventory.Refresh

Set DataInventory.DataSource = AdoInventory

'To connect AdoStock to MS Access database inventory_br.mdb

AdoStock.ConnectionString = " Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=C:\ My Documents\inventory_br.mdb;Persist Security

Info=False"

AdoStock.RecordSource = "SELECT * FROM Stock"

AdoStock.Refresh

Set DataStock.DataSource = AdoStock

Notice that you can use SQL syntax SELECT * FROM to select all

the data from the Inventory table and the stock table. SQL is a

powerful language that is used to manipulate databases.

The next code is to let user enter data into the DataInventory table

and double click to update the data as well as to calculate the total

cost. It also adds brands and categories into the brand combo box

and the category combo box respectively. The code is as follows:

Private Sub DataInventory_DblClick()

Dim TotalCost As Integer

If AdoInventory.Recordset.Fields("CPU") <> "" Then

TotalCost = Val(AdoInventory.Recordset.Fields("CPU")) *

Val(AdoInventory.Recordset.Fields("Stock"))

AdoInventory.Recordset.Fields("TCost") = Str(TotalCost)

Else

AdoInventory.Recordset.Fields("TCost") = ""

End If

250

'To load all brands into comboBrand

'To load all Categories into comboCategory

Do Until AdoInventory.Recordset.EOF

ReDim B(i), C(j) As String

B(i) = AdoInventory.Recordset.Fields("Brand")

C(j) = AdoInventory.Recordset.Fields("Category")

ComboBrand.AddItem B(i)

ComboCategory.AddItem C(j)

AdoInventory.Recordset.MoveNext

Loop

AdoInventory.Recordset.MoveFirst

End Sub

You can also write the code to search for the items once they are

entered into the inventory table. The code is as follows:

'Search for items using SQL query

Dim SearchString1, SearchString2 As String

SearchString1 = ComboBrand.Text

SearchString2 = ComboCategory.Text

If ComboBrand.Text <> "All Brands" And ComboCategory.Text <> "All

Categories" Then

AdoInventory.RecordSource = "SELECT * FROM Inventory WHERE

Brand='" & SearchString1 & "' and Category='" & SearchString2 & "'"

ElseIf ComboBrand.Text = "All Brands" And ComboCategory.Text <>

"All Categories" Then

AdoInventory.RecordSource = "SELECT * FROM Inventory WHERE

Category='" & SearchString2 & "'"

ElseIf ComboBrand.Text <> "All Brands" And ComboCategory.Text =

"All Categories" Then

AdoInventory.RecordSource = "SELECT * FROM Inventory WHERE

Brand='" & SearchString1 & "'"

251

ElseIf ComboBrand.Text = "All Brands" And ComboCategory.Text = "All

Categories" Then

AdoInventory.RecordSource = "SELECT * FROM Inventory"

End If

AdoInventory.Refresh

Next, you need to write code for entering new item in DataStock

table. The code is as follows:

'To add items to Ado Stock

AdoStock.Recordset.AddNew

AdoStock.Recordset.Fields("Date") = Format(Date, "dd/mm/yyyy")

AdoStock.Recordset.Fields("Category") =

AdoInventory.Recordset.Fields("Category")

AdoStock.Recordset.Fields("Brand") =

AdoInventory.Recordset.Fields("Brand")

AdoStock.Recordset.Fields("Item Description") =

AdoInventory.Recordset.Fields("Item Description")

AdoStock.Recordset.Fields("Model Number") =

AdoInventory.Recordset.Fields("Model Number")

AdoStock.Recordset.Fields("CPU") =

AdoInventory.Recordset.Fields("CPU")

AdoStock.Recordset.Update

*Please note that AddNew is to allow adding new data and Update

is to save data.

252

Figure 7.12

The Complete Code

'To set border styles for Excel

Private Enum ExlBorderAround

xlHairline = 1

xlMedium = -4138

xlThick = 4

xlThin = 2

xlColorIndexAutomatic = -4105

End Enum

Private Sub CmdEnd_Click()

End

End Sub

Private Sub CmdConvert_Click()

Dim hex_val As String

Dim trueVal As Double

hex_val = AdoStock.Recordset.Fields("TCost")

'To convert hexadecimal to decimal value

trueVal = CInt("&H" & hex_val)

253

Text1.Text = Str(trueVal)

End Sub

Private Sub CmdCpu_Click()

Dim CostPU As String

CostPU = InputBox("Enter Unit Cost")

AdoStock.Recordset.Fields("CPU") = Str(Val(CostPU))

AdoStock.Recordset.Fields("TCost") =

Str(Val(AdoStock.Recordset.Fields("Out")) * Val(CostPU))

AdoInventory.Recordset.Update

AdoStock.Recordset.Update

End Sub

Private Sub CmdDo_Click()

'To sum up all the values in column 9 of the Flexigrid

Dim mysum As Double

Dim nrow As Integer

Dim r As Integer

nrow = MSFlexGrid1.Rows 'To count all the rows in MSFlexiGrid1

For r = 0 To nrow - 1

mysum = mysum + Val(MSFlexGrid1.TextMatrix(r, 9))

Next

Text1.Text = Str(mysum)

'To add last line to Flexigrid table that shows total cost

MSFlexGrid1.AddItem "" & vbTab & "" & vbTab & "" & vbTab & "" &

vbTab & "" _

& vbTab & "" & vbTab & "" & vbTab & "" & vbTab & "Total Cost" &

vbTab & Str(mysum)

'Printing Delivery order Via Excel

Dim ObjExcel As Object

Dim wbk As Object

254

Dim wst As Object

Dim i%

Dim myrow, mycol, noofusedrows As Integer

Set ObjExcel = CreateObject("Excel.Application")

Set wbk = ObjExcel.Workbooks.Add

Set wst = wbk.ActiveSheet

'This Adds a new workbook, you could open the workbook from file

also

Clipboard.Clear 'Clear the Clipboard

With MSFlexGrid1

'Select Full Contents (You could also select partial content)

.Col = 0 'From first column

.Row = 0 'From first Row (header)

.ColSel = .Cols - 1 'Select all columns

.RowSel = .Rows - 1 'Select all rows

Clipboard.SetText .Clip 'Send to Clipboard

End With

With ObjExcel.Application.ActiveSheet

.Range("A1").EntireColumn.Columnwidth = 8 'Set Columnwidth for

column1=10

.Range("B1").EntireColumn.Columnwidth = 10

.Range("C1").EntireColumn.Columnwidth = 8

.Range("D1").EntireColumn.Columnwidth = 10

.Range("E1").EntireColumn.Columnwidth = 12

.Range("F1").EntireColumn.Columnwidth = 4

.Range("G1").EntireColumn.Columnwidth = 4

.Range("H1").EntireColumn.Columnwidth = 6

.Range("I1").EntireColumn.Columnwidth = 10

.Range("J1").EntireColumn.Columnwidth = 6

.Range("F1").EntireColumn.HorizontalAlignment = 2

.Range("G1").EntireColumn.HorizontalAlignment = 2

'Select Cell A1 (will paste from here, to ‘different cells)

'Paste clipboard contents

.Range("A1").Select .Paste noofusedrows =

255

wst.UsedRange.Rows.Count 'To get number of used ‘rows

'To set borders for the selected cells

For myrow = 2 To noofusedrows

For mycol = 1 To 10

wst.Cells(myrow, mycol).BorderAround , ExlBorderAround.xlThin,

ExlBorderAround.xlColorIndexAutomatic, vbBlack

Next

Next

'To set borders for the last row

wst.Range(.Cells(noofusedrows + 1, 1), .Cells(noofusedrows + 1,

10)).BorderAround , ExlBorderAround.xlThin,

ExlBorderAround.xlColorIndexAutomatic, vbBlack

.PrintOut 'To print out the selection

End With

End Sub

Private Sub CmdExit_Click()

 End

End Sub

Private Sub CmdIn_Click()

Dim hex_val As String

Dim StockValue

AdoStock.Recordset.Fields("In") = InputBox("Enter Stock In")

StockValue = Val(AdoStock.Recordset.Fields("In")) +

Val(AdoInventory.Recordset.Fields("Stock"))

AdoInventory.Recordset.Fields("Stock") = Str(StockValue)

AdoInventory.Recordset.Update

AdoStock.Recordset.Update

End Sub

Private Sub cmdNew_Click()

256

'Add new item to stock

Dim MsgInstr As Integer

MsgInstr = MsgBox("Have you selected one item from Stock List? If

YES, Click OK to Proceed", vbYesNoCancel + vbQuestion, "Select Item")

If MsgInstr = 6 Then

Timer4.Enabled = True

Else

Timer4.Enabled = False

End If

End Sub

Private Sub Cmdout_Click()

'Enter total item out

Dim StockValue

AdoStock.Recordset.Fields("Out") = InputBox("Enter Stock Out")

StockValue = Val(AdoInventory.Recordset.Fields("Stock")) -

Val(AdoStock.Recordset.Fields("Out"))

AdoInventory.Recordset.Fields("Stock") = Str(StockValue)

AdoInventory.Recordset.Update

AdoStock.Recordset.Update

End Sub

Private Sub CmdSearch_Click()

'Search for items using SQL query

Dim SearchString1, SearchString2 As String

SearchString1 = ComboBrand.Text

SearchString2 = ComboCategory.Text

If ComboBrand.Text <> "All Brands" And ComboCategory.Text <> "All

Categories" Then

AdoInventory.RecordSource = "SELECT * FROM Inventory WHERE

Brand='" & SearchString1 & "' and Category='" & SearchString2 & "'"

ElseIf ComboBrand.Text = "All Brands" And ComboCategory.Text <>

"All Categories" Then

AdoInventory.RecordSource = "SELECT * FROM Inventory WHERE

257

Category='" & SearchString2 & "'"

ElseIf ComboBrand.Text <> "All Brands" And ComboCategory.Text =

"All Categories" Then

AdoInventory.RecordSource = "SELECT * FROM Inventory WHERE

Brand='" & SearchString1 & "'"

ElseIf ComboBrand.Text = "All Brands" And ComboCategory.Text = "All

Categories" Then

AdoInventory.RecordSource = "SELECT * FROM Inventory"

End If

AdoInventory.Refresh

'Formatting DataInventory (DataGrid)

With DataInventory

.Columns(0).Width = 2000 'Setting width for first column

.Columns(1).Width = 1500

.Columns(2).Width = 2500

.Columns(3).Width = 2000

.Columns(4).Width = 1200

.Columns(5).Width = 1100

.Columns(5).Caption = "Unit Cost" 'Set caption of column 8

.Columns(6).Width = 1200

.Columns(6).Caption = "Total Cost"

End With

End Sub

Private Sub CmdView_Click()

'View all items

AdoInventory.RecordSource = "SELECT * FROM Inventory"

AdoInventory.Refresh

End Sub

Private Sub Command2_Click()

AdoInventory.Recordset.Update

258

End Sub

Private Sub Command3_Click()

AdoInventory.Recordset.Delete

End Sub

Private Sub Command4_Click()

If AdoStock.Recordset.BOF = False Then

AdoStock.Recordset.Delete

Else

MsgBox ("No Item to Delete")

End If

End Sub

Private Sub Command5_Click()

AdoInventory.Refresh.Refresh

End Sub

Private Sub ComboBrand_DropDown()

Timer1.Enabled = False

End Sub

Private Sub ComboCategory_DropDown()

Dim i, j As Integer

Do Until i = ComboCategory.ListCount

For j = 1 To ComboCategory.ListCount - i - 1

If ComboCategory.List(j + i) = ComboCategory.List(i) Then

ComboCategory.RemoveItem j + i

End If

Next

259

i = i + 1

Loop

End Sub

Private Sub Command1_Click()

Dim r, nrow As Integer

Dim mysum As Double

nrow = MSFlexiGrid1.Rows

For r = 0 To nrow - 1

mysum = mysum + Val(MSFlexiGrid1.TextMatrix(nrow, 9))

Next

End Sub

Private Sub DataInventory_AfterUpdate()

Dim TotalCost As Integer

If AdoInventory.Recordset.Fields("CPU") <> "" Then

TotalCost = Val(AdoInventory.Recordset.Fields("CPU")) *

Val(AdoInventory.Recordset.Fields("Stock"))

AdoInventory.Recordset.Fields("TCost") = Str(TotalCost)

Else

AdoInventory.Recordset.Fields("TCost") = ""

End If

End Sub

Private Sub DataInventory_DblClick()

If AdoInventory.Recordset.Fields("CPU") <> "" Then

Dim TotalCost As Integer

TotalCost = Val(AdoInventory.Recordset.Fields("CPU")) *

Val(AdoInventory.Recordset.Fields("Stock"))

AdoInventory.Recordset.Fields("TCost") = Str(TotalCost)

Else

AdoInventory.Recordset.Fields("TCost") = ""

End If

'To load all brands into comboBrand

'To load all Categories into comboCategory

260

Do Until AdoInventory.Recordset.EOF

ReDim B(i), C(j) As String

B(i) = AdoInventory.Recordset.Fields("Brand")

C(j) = AdoInventory.Recordset.Fields("Category")

ComboBrand.AddItem B(i)

ComboCategory.AddItem C(j)

AdoInventory.Recordset.MoveNext

Loop

AdoInventory.Recordset.MoveFirst

End Sub

Private Sub DataStock_Click()

Dim TotalCost As Integer

If AdoStock.Recordset.Fields("Out") <> "" Then

TotalCost = Val(AdoStock.Recordset.Fields("CPU")) *

Val(AdoStock.Recordset.Fields("Out"))

AdoStock.Recordset.Fields("TCost") = Str(TotalCost)

End If

End Sub

Private Sub DataStock_DblClick()

'To populate the MSFlexiGrid with data from Adostock in different

columns

'whenever the user clicks the row in dataStock

MSFlexGrid1.Visible = True

Dim DateStr, CategoryStr, BrandStr, MoNumStr, ItemStr, OutStr,

InString, BranchStr, CostStr, TCostStr, AllCostStr, linetext As String

Dim AllCost As Double

DateStr = AdoStock.Recordset.Fields("Date") 'To assign the value in

Date field ‘to DateStr

CategoryStr = AdoStock.Recordset.Fields("Category")

BrandStr = AdoStock.Recordset.Fields("Brand")

MoNumStr = AdoStock.Recordset.Fields("Model Number")

ItemStr = AdoStock.Recordset.Fields("Item Description")

261

OutStr = AdoStock.Recordset.Fields("Out")

InStrng = AdoStock.Recordset.Fields("In")

BranchStr = AdoStock.Recordset.Fields("Branch")

CostStr = AdoStock.Recordset.Fields("CPU")

TCostStr = AdoStock.Recordset.Fields("TCost")

AllCost = AllCost + Val(TCostStr)

AllCostStr = Str(AllCost)

linetext = DateStr & vbTab & CategoryStr & vbTab & BrandStr & vbTab

& _

MoNumStr & vbTab & ItemStr & vbTab & InStrng & vbTab & OutStr &

vbTab & BranchStr & vbTab & _

CostStr & vbTab & TCostStr & vbTab & AllCostStr

MSFlexGrid1.ColWidth(0) = 1200 'sets the first column width to 1000.

MSFlexGrid1.ColWidth(1) = 1500 'sets the Second column width to

2500.

MSFlexGrid1.ColWidth(2) = 1500 'sets the Third column width to 1500.

MSFlexGrid1.ColWidth(3) = 1600 'sets the Fourth column width to

1600.

MSFlexGrid1.ColWidth(4) = 2000 'sets the Fifth column width to 3000.

MSFlexGrid1.ColWidth(5) = 500 'sets the Sixth column width to 2000.

MSFlexGrid1.ColWidth(6) = 500 'sets the Seven column width to 500.

MSFlexGrid1.ColWidth(7) = 600 'sets the Seven column width to 1000.

MSFlexGrid1.ColWidth(8) = 800 'sets the Seven column width to 1000.

MSFlexGrid1.ColWidth(9) = 600 'sets the Seven column width to 1000.

'To set columns alignments

Dim ColAlign As Integer

For ColAlign = 0 To 9

MSFlexGrid1.ColAlignment(ColAlign) = flexAlignLeftTop

Next

MSFlexGrid1.AddItem linetext

AdoStock.Recordset.Update

End Sub

262

Private Sub Form_Load()

'To connect to MS Access database inventory_br.mdb

AdoInventory.ConnectionString = "

Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\My

Documents\inventory_br.mdb;Persist Security Info=False"

AdoInventory.RecordSource = "SELECT * FROM Inventory"

AdoInventory.Refresh

Set DataInventory.DataSource = AdoInventory

'To connect to MS Access database inventory_br.mdb

AdoStock.ConnectionString = " Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=C:\Documents and Settings\Voon Kiong Liew\My

Documents\Liew Folder\Bunga Raya\inventory_br.mdb;Persist

Security Info=False"

AdoStock.RecordSource = "SELECT * FROM Stock"

AdoStock.Refresh

Set DataStock.DataSource = AdoStock

'To set the alignment of the windows to centre of screen

Left = (Screen.Width - Width) \ 2

Top = (Screen.Height - Height) \ 2

'To set the alignment of the datagrid to centre of Form

DataInventory.Left = (Form1.Width - DataInventory.Width) \ 2

DataStock.Left = (Form1.Width - DataStock.Width) \ 2

'To load all brands into comboBrand

ComboBrand.Text = "All Brands"

ComboBrand.AddItem "All Brands"

'To load all Categories into comboCategory

ComboCategory.Text = "All Categories"

ComboCategory.AddItem "All Categories"

Do Until AdoInventory.Recordset.EOF

ReDim B(i), C(j) As String

B(i) = AdoInventory.Recordset.Fields("Brand")

C(j) = AdoInventory.Recordset.Fields("Category")

263

ComboBrand.AddItem B(i)

ComboCategory.AddItem C(j)

AdoInventory.Recordset.MoveNext

Loop

AdoInventory.Recordset.MoveFirst

'Formatting DataInventory (DataGrid)

With DataInventory

.Columns(0).Width = 2000 'Setting width for first column

.Columns(1).Width = 1500

.Columns(2).Width = 2500

.Columns(3).Width = 2000

.Columns(4).Width = 1200

.Columns(5).Width = 1100

.Columns(5).Caption = "Unit Cost" 'Set caption of column 8

.Columns(6).Width = 1200

.Columns(6).Caption = "Total Cost"

End With

'Formatting DataStock (DataGrid)

With DataStock

.Columns(0).Width = 1500 'Setting width for first column

.Columns(1).Width = 2000

.Columns(2).Width = 1500

.Columns(3).Width = 2500

.Columns(4).Width = 1800

.Columns(5).Width = 600

.Columns(6).Width = 600

.Columns(7).Width = 1100

.Columns(8).Width = 1100

.Columns(8).Caption = "Unit Cost" 'Set caption of column 8

.Columns(9).Width = 1200

.Columns(9).Caption = "Total Cost"

End With

264

End Sub

'Add item brand to combo box

Private Sub Timer1_Timer()

Dim i, j As Integer

Do Until i = ComboBrand.ListCount

For j = 1 To ComboBrand.ListCount - i - 1

If ComboBrand.List(j + i) = ComboBrand.List(i) Then

ComboBrand.RemoveItem j + i

End If

Next

i = i + 1

Loop

End Sub

Private Sub Timer2_Timer()

'Add category to combo box

Dim i, j As Integer

Do Until i = ComboCategory.ListCount

For j = 1 To ComboCategory.ListCount - i - 1

If ComboCategory.List(j + i) = ComboCategory.List(i) Then

ComboCategory.RemoveItem j + i ' To remove duplicated items

End If

Next

i = i + 1

Loop

End Sub

Private Sub Timer3_Timer()

Timer1.Enabled = False

Timer2.Enabled = False

Timer3.Enabled = False

265

End Sub

Private Sub Timer4_Timer()

'To add items to Ado Stock

AdoStock.Recordset.AddNew

AdoStock.Recordset.Fields("Date") = Format(Date, "dd/mm/yyyy")

AdoStock.Recordset.Fields("Category") =

AdoInventory.Recordset.Fields("Category")

AdoStock.Recordset.Fields("Brand") =

AdoInventory.Recordset.Fields("Brand")

AdoStock.Recordset.Fields("Item Description") =

AdoInventory.Recordset.Fields("Item Description")

AdoStock.Recordset.Fields("Model Number") =

AdoInventory.Recordset.Fields("Model Number")

AdoStock.Recordset.Fields("CPU") =

AdoInventory.Recordset.Fields("CPU")

AdoStock.Recordset.Update

Timer4.Enabled = False

End Sub

266

8. Internet Applications
8.1 Web Browser

If you are bored with your existing web browsers, you might want

to create your very own web browser using Visual Basic. To create

the web browser, you have to press Ctrl+T to open up the

components window and select Microsoft Internet Control. After

you have selected the control, you will see the control appear in the

toolbox as a small globe. To insert the Microsoft Internet Control

into the form, just drag the globe into the form and a white rectangle

will appear in the form. You can resize this control as you wish.

This control is given the default name WebBrowser1.

To design the interface, you need to insert one combo box which

will be used to display the URLs. In addition, you need to insert a

few images which will function as command buttons for the user to

navigate the Internet; they are the Go command button, the Back

command button, the Forward command button, the Refresh

command button and the Home command button. You can put in

the command buttons instead of the images but using images will

definitely improve the look of the browser.

The procedures for all the commands are relatively easy to write.

There are many methods, events, and properties associated with the

web browser but you need to know just a few of them to come up

with a functional Internet browser. They are listed in Table 8.1.

267

Table 8.1

Method Description

GoBack To navigate backward one page in the history
list.

GoForward To navigate forward one page in the history
list.

GoHome To navigate to the default start page.

GoSearch To navigate to the current search page.

Navigate To navigate to the URL or to the file identified
by a full path.

Refresh To reload the file that is currently loaded.

Stop To cancel the current web page loading
operation.

Properties

Busy To indicate whether the web browser is
engaged in navigation or downloading
operations.

LocationName To retrieve the name of the document that
Internet Explorer is currently displaying.

LocationURL To retrieve the URL of the web page that
Internet Explorer is currently displaying.

Event

DocumentComplete Executed when a document has been
completely loaded.

http://msdn.microsoft.com/workshop/browser/webbrowser/reference/methods/goback.asp
http://msdn.microsoft.com/workshop/browser/webbrowser/reference/methods/goforward.asp
http://msdn.microsoft.com/workshop/browser/webbrowser/reference/methods/gohome.asp
http://msdn.microsoft.com/workshop/browser/webbrowser/reference/methods/gosearch.asp
http://msdn.microsoft.com/workshop/browser/webbrowser/reference/methods/navigate.asp
http://msdn.microsoft.com/workshop/browser/webbrowser/reference/methods/refresh.asp
http://msdn.microsoft.com/workshop/browser/webbrowser/reference/methods/stop.asp
http://msdn.microsoft.com/workshop/browser/webbrowser/reference/properties/busy.asp
http://msdn.microsoft.com/workshop/browser/webbrowser/reference/properties/locationname.asp
http://msdn.microsoft.com/workshop/browser/webbrowser/reference/properties/locationurl.asp
http://msdn.microsoft.com/workshop/browser/webbrowser/reference/events/documentcomplete.asp

268

DownloadBegin Executed when a navigation operation begins.

DownloadComplete Executed when a navigation operation finishes.

FileDownload Executed to indicate that a file download is
about to occur.

NavigateComplete Executed after navigation to a link is
completed.

The method navigate is to go the website specified by its Uniform

Resource Locator (URL). The syntax is WebBrowser1.Navigate

(“URL”). In this program, if you want to load www.vbtutor.net

web page at start-up, you can enter this address in the URL slot. The

code is

Private Sub Form_Load()

WebBrowser1.Navigate ("http://www.vbtutor.net")

End Sub

To show the URL in the combo box and also to display the page

title at the form caption after the page is completely loaded, we can

use the following statements:

Private Sub WebBrowser1_DocumentComplete (ByVal pDisp As Object,

URL As Variant)

Combo1.Text = URL

Form1.Caption = WebBrowser1.LocationName

Combo1.AddItem URL

End Sub

http://msdn.microsoft.com/workshop/browser/webbrowser/reference/events/downloadbegin.asp
http://msdn.microsoft.com/workshop/browser/webbrowser/reference/events/downloadcomplete.asp
http://msdn.microsoft.com/workshop/browser/webbrowser/reference/events/filedownload.asp
http://msdn.microsoft.com/workshop/browser/webbrowser/reference/events/navigatecomplete.asp

269

The following procedure will tell the user to wait while the page is

loading.

Private Sub WebBrowser1_DownloadBegin ()

Combo1.Text = "Page loading, please wait"

End Sub

The Code

Private Sub Form_Load ()

WebBrowser1.Navigate ("http://www.vbtutor.net")

End Sub

Private Sub Image1_Click ()

WebBrowser1.GoHome

End Sub

Private Sub Image2_Click ()

On Error Resume Next

WebBrowser1.GoForward

End Sub

Private Sub Image3_Click ()

On Error Resume Next

WebBrowser1.GoBack

End Sub

Private Sub Image4_Click ()

WebBrowser1.Refresh

End Sub

270

Private Sub Image5_Click ()

WebBrowser1.Stop

End Sub

Private Sub Label2_Click ()

WebBrowser1.Navigate (Combo1.Text)

End Sub

Private Sub Label4_Click ()

WebBrowser1.GoSearch

End Sub

Private Sub WebBrowser1_DocumentComplete(ByVal pDisp As Object,

URL As Variant)

Combo1.Text = URL

Form1.Caption = WebBrowser1.LocationName

Combo1.AddItem URL

End Sub

Private Sub WebBrowser1_DownloadBegin()

Combo1.Text = "Page loading, please wait"

End Sub

271

The Interface is shown in Figure 8.1.

Figure 8.1

272

8.2 FTP Program

File Transfer Protocol (FTP) is a system for transferring files

between two computers over the Internet where one of the

computers is known as the server and the other one as the client.

FTP program is very useful for website management as it allows the

webmaster to update web pages by uploading local files to the web

server easily . For normal PC users, FTP program can also be used

to download files from many FTP sites that offer a lot of useful

stuffs such as free software, free games, product information,

applications, tools, utilities, drivers, fixes and etc.

FTP program usually comprises an interface that shows the

directories of the local computer and the remote server. Files can be

transferred just by clicking the relevant arrows. To log into the FTP

site, you have to enter the username and the password; however, for

public domains, you just need to type the word anonymous as the

username and you can leave out the password. The FTP host name

takes the form ftp.servername.com, for example, the Microsoft FTP

site’s host name is ftp.microsoft.com . FTP program usually

provides a set of commands such as ChgDir (changing directory),

MkDir (Changing directory), Rename (renaming a file), view (to

view a file), delete (to delete a file) etc.

If you need to use a FTP program, you can purchase one or you can

download a couple of the programs that are available free of charge

over the Internet. However, you can also create your very own FTP

program with Visual Basic. Visual Basic allows you to build a fully

functionally FTP program which may be just as good as the

commercial FTP programs. The engine behind it is Microsoft

Internet Transfer Control 6.0 in which you need to insert into the

form before you can create the FTP program. The name of the

Microsoft Internet Transfer Control 6.0.is Inet and if you only put

in one control, its name is Inet1.

ftp://ftp.servername.com/
ftp://ftp.microsoft.com/

273

Inet1 comprises three important properties namely Inet1.URL

which is used to identify the FTP hostname, Inet1.UserName

which is used to accept the username and the Inet1.Password

which is used to accept the user’s passwords. The statements for the

program to read the hostname of the server, the username and the

password entered into the TxtURL textbox, the TxtUserName

textbox and the TxtPassword textbox by the user are shown below:

Inet1.URL=Text1.Text

Inet1.UserName=Text2.Text

Inet1.Passoword=Text3.Text

After the user enters the above information, the program will

attempt to connect to the server using the following command,

where Execute is the method and DIR is the FTP command that

will read the list of files from the specified directory of the remote

computer and you need to use the getChunk method to actually

retrieve the directory’s information.

 Inet1.Execute, "DIR"

After connecting to the server, you can choose the file to download

from the remote computer by using the statement

Inet1.Execute, , "get" & remotefile & localfile

Where remotefile is the file of the remote site and localfile is the

file of the local system. However, very often you need to provide

the full path of the local file, which you can do that by modifying

the above syntax to the following syntax:

Inet1.Execute , , "get" & remotefile & localpath & remotefile

The above statements will ensure that the remote file will be

downloaded to the location specified by the localpath and the file

downloaded will assume the same name as the remote file. For

example, the remote file is readme.txt and the localpath is

274

C:\temp , so the downloaded file will be saved in

C:\temp\readme.txt.

To monitor the status of the connection, you can use the

StateChanged event that is associated with Inet1 together with a set

of the state constants that are listed in Table 8.2.

Table 8.2

Constant Value Description

icHostResolvingHost 1 The control is looking up the IP
address of the specified host
computer.

icHostResolved 2 The control successfully found the
IP address of the specified host
computer.

icConnecting 3 The control is connecting to the host
computer.

icConnected 4 The control successfully connected
to the host computer.

icRequesting 5 The control is sending a request to
the host computer.

icRequestSent 6 The control successfully sent the
request.

icReceivingResponse 7 The control is receiving a response
from the host computer.

icResponseReceived 8 The control successfully received a
response from the host computer.

icDisconnecting 9 The control is disconnecting from
the host computer.

275

icDisconnected 10 The control successfully
disconnected from the host
computer.

icError 11 An error occurred in communicating
with the host computer.

icResponseCompleted 12 The request has been completed
and all data has been received.

Under the StateChanged event, you can use the Select Case…End

Select statements to notify the users regarding the various states of

the connection. The procedure is as follows:

Private Sub Inet1_StateChanged(ByVal State As Integer)

Select Case State

Case icError

MsgBox Inet1.ResponseInfo, , "File failed to transfer"

Case icResolvingHost

Label6.Caption = "Resolving Host"

Case icHostResolved

Label6.Caption = "Host Resolved"

Case icConnecting

Label6.Caption = "Connecting Host"

Case icConnected

Label6.Caption = "Host connected"

Case icReceivingResponse

Label6.Caption = "Receiving Response"

Case icResponseReceived

276

Label6.Caption = "Got Response"

Case icResponseCompleted

Dim data1 As String

Dim data2 As String

MsgBox "Download Completed"

End Select

End Sub

The states of the connection will be displayed on Label6.

The FTP program also contains a form and a dialog box. The dialog

box can be added by clicking on the Project item on the menu bar

and then selecting the Add Form item on the drop-down list. You

can either choose a normal dialog box or a login dialog box. The

function of the dialog box is to accept the FTP address, the

username, and the password and then to establish connection to the

server. After a successful login, the dialog box will be hidden, and

the main form will be presented to the user to browse the remote

directory and to choose certain files to download.

The interface of the login dialog is shown in following figure:

277

Figure 8.2

The states of the connection will be displayed on the label at the

bottom. The program for the login dialog is:

Option Explicit

Private Sub OKButton_Click()

Inet1.URL = Text1.Text

Inet1.UserName = Text2.Text

Inet1.Password = Text3.Text

Inet1.Execute , "DIR"

Form1.Show

Dialog.Hide

End Sub

Private Sub Inet1_StateChanged(ByVal State As Integer)

Select Case State

Case icError

MsgBox Inet1.ResponseInfo, , "File failed to transfer"

278

Case icResolvingHost

Label6.Caption = "Resolving Host"

Case icHostResolved

Label6.Caption = "Host Resolved"

Case icConnecting

Label6.Caption = "Connecting Host"

Case icConnected

Label6.Caption = "Host connected"

Case icReceivingResponse

Label6.Caption = "Receiving Response"

Case icResponseReceived

Label6.Caption = "Got Response"

Case icResponseCompleted

Dim data As String

Dim data1 As String

MsgBox "Transfer Completed"

 Do

 data1 = Inet1.GetChunk(1024, icString)

 data = data & data1

 Loop While Len(data1) <> 0

 Form1.Text6.Text = data

End Select

End Sub

Private Sub CancelButton_Click()

279

Text1.Text = ""

Text2.Text = ""

Text3.Text = ""

End Sub

The statement data1 = Inet1.GetChunk (1024, icString) is to use

the getChunk method to grab information of the remote directory

and then display the files of the directory in the Text6 textbox.

After successful log in, the main form will be presented as shown in

the following Figure 8.4.

Figure 8.4

The program code to download the file is:

280

Dim remotefile As String

Dim mypath As String

Dim cmd As String

Private Sub Command1_Click ()

remotefile = Text4.Text

mypath = Text5.Text

cmd = "GET " & remotefile & " " & mypath & remotefile

Inet1.Execute , cmd

End Sub

Private Sub Command2_Click ()

Inet1.Cancel

End

End Sub

Private Sub Form_Load ()

Dialog.Show

Form1.Hide

End Sub

Private Sub Inet1_StateChanged (ByVal State As Integer)

Select Case State

Case icError

MsgBox Inet1.ResponseInfo, , "File failed to transfer"

Case icResponseCompleted

MsgBox "Download Completed"

End Select

End Sub

281

Index

Abs, 195, 196, 199

Activate, 176

ActiveX data object, 224

AddItem method, 131

ADO control, 224, 227, 230,

234, 235

ADO data controls, 248

array, 71, 75, 115, 193

arrays, 39, 71, 97

ASCII, 34

Atn, 144, 145

avi, 173, 185, 186, 187

Back command, 266

boggle, 111

Boolean, 39, 41, 97, 99, 119,

197, 204

calculator, 193

caption, 115, 220, 224, 268

CD player, 178

check box, 214

chr, 111

Chr, 111

Chr function, 34

Cls method, 204

code window, 116

combo box, 266, 268

Combo Box, 178

command button, 116, 222,

234, 235, 237

common dialog box, 167, 168,

169, 170

components, 173, 224, 266

ConnectionString, 227

controls, 114, 178, 179, 185,

225

data control, 220, 222, 224,

227

database, 220, 222, 223, 224,

227, 229, 236

DatabaseName, 220

DataField, 220, 226

DataGrid controls, 248

DataSource, 220, 226

degree, 2

dialog box, 173, 224, 227, 228,

276

DirListBox, 167, 178, 179, 185

Do Until, 238

Do.... Loop Until, 131

282

Do...Loop While, 129

DocumentComplete, 267, 268,

270

DownloadBegin, 268, 269, 270

DownloadComplete, 268

dragdrop method, 40

DriveListBox, 167, 178, 179,

185

ElseIf, 133

End Select, 115, 116, 120, 121,

122, 123, 124, 275, 278

error handling, 216

Exit Sub, 189, 230, 231, 238

FileDownload, 268

FileListBox, 167, 178, 179, 185

FillStyle, 1, 4, 164

FleGrid, 248

For....Next Loop, 127

For...Next loop, 71

For…Next, 72

form, 173, 178, 185, 220, 224,

227, 233, 234, 236, 237, 238,

266, 268, 272, 276, 279

Forward command, 266

FTP, 272, 273, 276

function, 118, 178, 185, 266,

276

getChunk method, 273, 279

Go command, 266

graphics, 224

Home command, 266

icConnected, 274, 275, 278

icConnecting, 274, 275, 278

icDisconnected, 275

icDisconnecting, 274

icError, 275, 277, 280

icHostResolved, 274, 275, 278

icHostResolvingHost, 274

icReceivingResponse, 274, 275,

278

icRequesting, 274

icRequestSent, 274

icResponseCompleted, 275,

276, 278, 280

icResponseReceived, 274, 275,

278

If...Then, 39

image control, 39, 96, 97, 168,

169, 170

Inet1, 272, 273, 274, 275, 277,

278, 279, 280

Int, 75, 76, 111, 116, 122

Integer, 75, 78, 115, 118, 119,

120, 193, 194, 197, 200, 201,

275, 277, 280

283

interface, 71, 74, 193, 222,

224, 234, 266, 272, 276

interval value, 33, 203

KeyPress, 118

Label, 226

Label controls, 71

list box, 179, 185

List Box, 179

ListIndex, 180, 181, 182, 183,

186, 187, 188

LoadPicture, 12

localfile, 273

LocationName, 267, 268, 270

LocationURL, 267

Loop While, 278

MaxButton, 203

Microsoft ActiveX Data Control

6, 224

Microsoft Internet Control,

266

Microsoft Internet Transfer

Control 6.0, 272

Microsoft Jet 3.51 OLE DB

provider, 228

Microsoft Multimedia Control,

173, 175, 178, 180, 181, 185

Microsoft Multimedia Control

6.0, 6, 107

midi files, 173, 178, 180

Mod, 127, 128

Move, 73, 74, 75, 79, 80, 81,

82, 83, 84, 85, 88, 89, 91, 92,

150, 221, 222

mp3, 173, 185, 186, 187

mpeg, 173, 185, 186, 187

multimedia files, 173, 180

NavigateComplete, 268

On Error Goto, 216

Option Base, 75

option buttons, 114, 115

password, 33, 34, 35, 36, 37,

38, 106, 107, 133, 232, 236,

238, 272, 273, 276

PasswordChar, 234, 235, 237

PasswordChar property, 133

picture box, 138, 147, 163, 167,

169, 170, 185, 204

Pmt, 159, 161

properties, 72, 175, 220, 225,

227, 233, 234, 237, 266, 273

Pset, 138, 147

randomization process, 75

randomize, 116

RecordSource, 220, 229, 241,

242, 243, 244, 249, 250, 256,

257, 262

284

Refresh command, 266

remotefile, 273, 280

Rnd, 111

Rnd function, 1, 12, 34, 107,

111

Round, 125, 126, 136, 140,

143, 152

rounded square, 74

runtime, 224

SearchSrting, 242

SELECT, 241, 242, 243, 244,

248, 249, 250, 256, 257, 262

Select Case, 26, 39, 42, 45, 46,

48, 50, 52, 54, 56, 58, 60, 62,

64, 115, 116, 120, 121, 122,

123, 129, 130, 275, 277, 280

shape control, 71

Single, 75

Slot machine, 1

SQL, 232, 241, 242, 248, 249,

250, 256

Sqr, 125, 126, 136, 142, 143,

201

statements, 115, 116, 118, 179,

185, 196, 268, 273, 275

Str, 10, 15, 16, 19, 69, 90, 95,

107, 121, 123, 124, 133, 145,

161, 193, 195, 196, 197, 198,

199, 201, 249, 253, 255, 256,

259, 260, 261

stretchable property, 168, 170

syntax, 268, 273

Timer, 3, 8, 10, 12, 17, 32, 33,

37, 38, 74, 76, 79, 90, 92, 95,

107, 122, 150, 203, 211, 264,

265

timer control, 107, 203

Toolbox, 6, 107

twips, 72

Uniform Resource Locator,

268

URL, 267, 268, 270, 273, 277

Val, 121, 123, 124, 197

variables, 71

Variant, 75, 197, 268, 270

vbCrLf, 216, 217, 218

vbYes, 231

vbYesNo, 231

video files, 173, 180, 185

Visual Data Manager, 247

wav, 85, 86, 173, 180, 181,

182, 185, 186, 187

wave audio files, 180

web browser, 266, 267, 272

